1CIH

STRUCTURAL AND FUNCTIONAL EFFECTS OF MULTIPLE MUTATIONS AT DISTAL SITES IN CYTOCHROME C


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Structural and functional effects of multiple mutations at distal sites in cytochrome c.

Lo, T.P.Komar-Panicucci, S.Sherman, F.McLendon, G.Brayer, G.D.

(1995) Biochemistry 34: 5259-5268

  • DOI: 10.1021/bi00015a041
  • Primary Citation of Related Structures:  
    1CIE, 1CIF, 1CIG, 1CIH

  • PubMed Abstract: 
  • Multiple mutations at distally located sites have been introduced into yeast iso-1 cytochrome c to determine the contributions of three amino acids to the structural and functional properties of this protein. The mutant proteins, for which high-resolution structures were determined, included all possible combinations of the substitutions Arg38Ala, Asn52Ile, and Phe82Ser ...

    Multiple mutations at distally located sites have been introduced into yeast iso-1 cytochrome c to determine the contributions of three amino acids to the structural and functional properties of this protein. The mutant proteins, for which high-resolution structures were determined, included all possible combinations of the substitutions Arg38Ala, Asn52Ile, and Phe82Ser. Arg38, Asn52, and Phe82 are all conserved in the primary sequences of eukaryotic cytochromes c and have been shown to significantly affect several properties of these proteins including protein stability, heme reduction potential, and oxidation state dependent conformational changes. The present studies show that the structural consequences of each amino acid substitution in combinatorial mutant proteins were similar to those observed in the related single-mutant proteins, and therefore no synergistic effect between mutation sites was observed for this feature. With respect to protein stability, the effect of individual mutations can be understood from the structural changes observed for each. It is found that stability effects of the three mutation sites are independent and cumulative in multiple-mutant proteins. This reflects the independent nature of the structural changes induced at the three distally located mutation sites. In terms of heme reduction potential two effects are observed. For substitution of Phe82 by serine, the mechanism by which reduction potential is lowered is different from that occurring at either the Arg38 or the Asn52 site and is independent of residue replacements at these latter two positions. For Arg38 and Asn52, overlapping interactions lead to a higher reduction potential than expected from a strict additive effect of substitutions at these residues. This appears to arise from interaction of these two amino acids with a common heme element, namely, the heme propionate A group. The present results underscore the difficulty of predicting synergistic effects of multiple mutations within a protein.


    Related Citations: 
    • The Role of a Conserved Internal Water Molecule and its Associated Hydrogen Bond Network in Cytochrome C
      Berghuis, A.M., Guillemette, J.G., Mclendon, G., Sherman, F., Brayer, G.D.
      (1994) J Mol Biol 236: 786
    • Mutation of Tyrosine-67 to Phenylalanine in Cytochrome C Significantly Alters the Local Heme Environment
      Berghuis, A.M., Guillemette, J.G., Smith, M., Brayer, G.D.
      (1994) J Mol Biol 235: 1326
    • Oxidation State-Dependent Conformational Changes in Cytochrome C
      Berghuis, A.M., Brayer, G.D.
      (1992) J Mol Biol 223: 959
    • High-Resolution Refinement of Yeast Iso-1-Cytochrome C and Comparisons with Other Eukaryotic Cytochromes C
      Louie, G.V., Brayer, G.D.
      (1990) J Mol Biol 214: 527
    • A Polypeptide Chain-Refolding Event Occurs in the Gly82 Variant of Yeast Iso-1-Cytochrome C
      Louie, G.V., Brayer, G.D.
      (1989) J Mol Biol 210: 313
    • Crystallization of Yeast Iso-2-Cytochrome C Using a Novel Hair Seeding Technique
      Leung, C.J., Nall, B.T., Brayer, G.D.
      (1989) J Mol Biol 206: 783
    • Role of Phenylalanine-82 in Yeast Iso-1-Cytochrome C and Remote Conformational Changes Induced by a Serine Residue at This Position
      Louie, G.V., Pielak, G.J., Smith, M., Brayer, G.D.
      (1988) Biochemistry 27: 7870
    • Yeast Iso-1-Cytochrome C. A 2.8 Angstrom Resolution Three-Dimensional Structure Determination
      Louie, G.V., Hutcheon, W.L.B., Brayer, G.D.
      (1988) J Mol Biol 199: 295

    Organizational Affiliation

    Department of Biochemistry, University of British Columbia, Vancouver, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
CYTOCHROME CA108Saccharomyces cerevisiaeMutation(s): 0 
UniProt
Find proteins for P00044 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P00044 
Go to UniProtKB:  P00044
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00044
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
HEC
Query on HEC

Download Ideal Coordinates CCD File 
C [auth A]HEME C
C34 H34 Fe N4 O4
HXQIYSLZKNYNMH-LJNAALQVSA-N
 Ligand Interaction
SO4
Query on SO4

Download Ideal Coordinates CCD File 
B [auth A]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
M3L
Query on M3L
A L-PEPTIDE LINKINGC9 H21 N2 O2LYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Observed: 0.200 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 36.48α = 90
b = 36.48β = 90
c = 137.28γ = 90
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-01-26
    Type: Initial release
  • Version 1.1: 2008-03-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other
  • Version 2.0: 2021-03-03
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Structure summary