Primary Citation of Related Structures:   1CIE, 1CIF, 1CIG, 1CIH
PubMed Abstract: 
Multiple mutations at distally located sites have been introduced into yeast iso-1 cytochrome c to determine the contributions of three amino acids to the structural and functional properties of this protein. The mutant proteins, for which high-resolution structures were determined, included all possible combinations of the substitutions Arg38Ala, Asn52Ile, and Phe82Ser ...
Multiple mutations at distally located sites have been introduced into yeast iso-1 cytochrome c to determine the contributions of three amino acids to the structural and functional properties of this protein. The mutant proteins, for which high-resolution structures were determined, included all possible combinations of the substitutions Arg38Ala, Asn52Ile, and Phe82Ser. Arg38, Asn52, and Phe82 are all conserved in the primary sequences of eukaryotic cytochromes c and have been shown to significantly affect several properties of these proteins including protein stability, heme reduction potential, and oxidation state dependent conformational changes. The present studies show that the structural consequences of each amino acid substitution in combinatorial mutant proteins were similar to those observed in the related single-mutant proteins, and therefore no synergistic effect between mutation sites was observed for this feature. With respect to protein stability, the effect of individual mutations can be understood from the structural changes observed for each. It is found that stability effects of the three mutation sites are independent and cumulative in multiple-mutant proteins. This reflects the independent nature of the structural changes induced at the three distally located mutation sites. In terms of heme reduction potential two effects are observed. For substitution of Phe82 by serine, the mechanism by which reduction potential is lowered is different from that occurring at either the Arg38 or the Asn52 site and is independent of residue replacements at these latter two positions. For Arg38 and Asn52, overlapping interactions lead to a higher reduction potential than expected from a strict additive effect of substitutions at these residues. This appears to arise from interaction of these two amino acids with a common heme element, namely, the heme propionate A group. The present results underscore the difficulty of predicting synergistic effects of multiple mutations within a protein.
Related Citations: 
The Role of a Conserved Internal Water Molecule and its Associated Hydrogen Bond Network in Cytochrome C Berghuis, A.M., Guillemette, J.G., Mclendon, G., Sherman, F., Brayer, G.D. (1994) J Mol Biol 236: 786
Mutation of Tyrosine-67 to Phenylalanine in Cytochrome C Significantly Alters the Local Heme Environment Berghuis, A.M., Guillemette, J.G., Smith, M., Brayer, G.D. (1994) J Mol Biol 235: 1326
Oxidation State-Dependent Conformational Changes in Cytochrome C Berghuis, A.M., Brayer, G.D. (1992) J Mol Biol 223: 959
High-Resolution Refinement of Yeast Iso-1-Cytochrome C and Comparisons with Other Eukaryotic Cytochromes C Louie, G.V., Brayer, G.D. (1990) J Mol Biol 214: 527
A Polypeptide Chain-Refolding Event Occurs in the Gly82 Variant of Yeast Iso-1-Cytochrome C Louie, G.V., Brayer, G.D. (1989) J Mol Biol 210: 313
Crystallization of Yeast Iso-2-Cytochrome C Using a Novel Hair Seeding Technique Leung, C.J., Nall, B.T., Brayer, G.D. (1989) J Mol Biol 206: 783
Role of Phenylalanine-82 in Yeast Iso-1-Cytochrome C and Remote Conformational Changes Induced by a Serine Residue at This Position Louie, G.V., Pielak, G.J., Smith, M., Brayer, G.D. (1988) Biochemistry 27: 7870
Yeast Iso-1-Cytochrome C. A 2.8 Angstrom Resolution Three-Dimensional Structure Determination Louie, G.V., Hutcheon, W.L.B., Brayer, G.D. (1988) J Mol Biol 199: 295
Organizational Affiliation: 
Department of Biochemistry, University of British Columbia, Vancouver, Canada.