1CFE

P14A, NMR, 20 STRUCTURES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

NMR solution structure of the pathogenesis-related protein P14a.

Fernandez, C.Szyperski, T.Bruyere, T.Ramage, P.Mosinger, E.Wuthrich, K.

(1997) J.Mol.Biol. 266: 576-593

  • DOI: 10.1006/jmbi.1996.0772

  • PubMed Abstract: 
  • The nuclear magnetic resonance (NMR) structure of the 15 kDa pathogenesis-related protein P14a, which displays antifungicidal activity and is induced in tomato leaves as a response to pathogen infection, was determined using 15N/13C doubly labeled an ...

    The nuclear magnetic resonance (NMR) structure of the 15 kDa pathogenesis-related protein P14a, which displays antifungicidal activity and is induced in tomato leaves as a response to pathogen infection, was determined using 15N/13C doubly labeled and unlabeled protein samples. In all, 2030 conformational constraints were collected as input for the distance geometry program DIANA. After energy-minimization with the program OPAL the 20 best conformers had an average root-mean-square deviation value relative to the mean coordinates of 0.88 A for the backbone atoms N, C(alpha) and C', and 1.30 A for all heavy atoms. P14a contains four alpha-helices (I to IV) comprising residues 4 to 17, 27 to 40, 64 to 72 and 93 to 98, a short 3(10)-helix of residues 73 to 75 directly following helix III, and a mixed, four-stranded beta-sheet with topology +3x, -2x, +1, containing the residues 24-25, 53 to 58, 104 to 111 and 117 to 124. These regular secondary structure elements form a novel, complex alpha + beta topology in which the alpha-helices I, III and IV and the 3(10)-helix are located above the plane defined by the beta-sheet, and the alpha-helix II lies below this plane. The alpha-helices and beta-strands are thus arranged in three stacked layers, which are stabilized by two distinct hydrophobic cores associated with the two layer interfaces, giving rise to an "alpha-beta-alpha sandwich". The three-dimensional structure of P14a provides initial leads for identification of the so far unknown active sites and the mode of action of the protein, which is of direct interest for the generation of transgenic plants with improved host defense properties.


    Related Citations: 
    • Pathogenesis-Related Pr-1 Proteins are Antifungal. Isolation and Characterization of Three 14-Kilodalton Proteins of Tomato and of a Basic Pr-1 of Tobacco with Inhibitory Activity Against Phytophthora Infestans
      Niderman, T.,Genetet, I.,Bruyere, T.,Gees, R.,Stintzi, A.,Legrand, M.,Fritig, B.,Mosinger, E.
      (1995) Plant Physiol. 108: 17
    • Amino Acid Sequence of the Pathogenesis-Related Leaf Protein P14 from Viroid-Infected Tomato Reveals a New Type of Structurally Unfamiliar Proteins
      Lucas, J.,Camacho Henriquez, A.,Lottspeich, F.,Henschen, A.,Sanger, H.L.
      (1985) Embo J. 4: 2745


    Organizational Affiliation

    Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PATHOGENESIS-RELATED PROTEIN P14A
A
135Solanum lycopersicumGene Names: PR1B1
Find proteins for P04284 (Solanum lycopersicum)
Go to UniProtKB:  P04284
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 
  • Olderado: 1CFE Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1997-11-12
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance