1B30

XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH 1,2-(4-DEOXY-BETA-L-THREO-HEX-4-ENOPYRANOSYLURONIC ACID)-BETA-1,4-XYLOTRIOSE)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.204 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant.

Schmidt, A.Gubitz, G.M.Kratky, C.

(1999) Biochemistry 38: 2403-2412

  • DOI: 10.1021/bi982108l
  • Primary Citation of Related Structures:  1B31, 1B3V, 1B3W, 1B3X, 1B3Y, 1B3Z

  • PubMed Abstract: 
  • Following a recent low-temperature crystal structure analysis of the native xylanase from Penicillium simplicissimum [Schmidt et al. (1998) Protein Sci. 7, 2081-2088], where an array of glycerol molecules, diffused into the crystal during soaking in ...

    Following a recent low-temperature crystal structure analysis of the native xylanase from Penicillium simplicissimum [Schmidt et al. (1998) Protein Sci. 7, 2081-2088], where an array of glycerol molecules, diffused into the crystal during soaking in a cryoprotectant, was observed within the active-site cleft, we utilized monomeric xylose as well as a variety of linear (Xn, n = 2 to 5) and branched xylooligomers at high concentrations (typically 20% w/v) as cryoprotectant for low-temperature crystallographic experiments. Binding of the glycosidic moiety (or its hydrolysis products) to the enzyme's active-site cleft was observed after as little as 30 s soaking of a native enzyme crystal. The use of a substrate or substrate analogue as cryoprotectant therefore suggests itself as a simple and widely applicable alternative to the use of crystallographic flow-cells for substrate-saturation experiments. Short-chain xylooligomers, i.e., xylobiose (X2) and xylotriose (X3), were found to bind to the active-site cleft with its reducing end hydrogen-bonded to the catalytic acid-base catalyst Glu132. Xylotetraose (X4) and -pentaose (X5) had apparently been cleaved during the soaking time into a xylotriose plus a monomeric (X4) or dimeric (X5) sugar. While the trimeric hydrolysis product was always found to bind in the same way as xylotriose, the monomer or dimer yielded only weak and diffuse electron density within the xylan-binding cleft, at the opposite side of the active center. This suggests that the two catalytic residues divide the binding cleft into a "substrate recognition area" (from the active site toward the nonreducing end of a bound xylan chain), with strong and specific xylan binding and a "product release area" with considerably weaker and less specific binding. The size of the substrate recognition area (3-4 subsites for sugar rings) explains enzyme kinetic data, according to which short oligomers (X2 and X3) bind to the enzyme without being hydrolyzed.


    Related Citations: 
    • Structure of the Xylanase from Penicillium Simplicissimum
      Schmidt, A.,Schlacher, A.,Steiner, W.,Schwab, H.,Kratky, C.
      (1998) Protein Sci. 7: 2081


    Organizational Affiliation

    Institut für Physikalische Chemie, Abteilung für Strukturbiologie, Karl-Franzens Universität Graz, Austria.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (XYLANASE)
A
302Penicillium simplicissimumEC: 3.2.1.8
Find proteins for P56588 (Penicillium simplicissimum)
Go to UniProtKB:  P56588
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
XYP
Query on XYP

Download SDF File 
Download CCD File 
A
BETA-D-XYLOPYRANOSE
C5 H10 O5
SRBFZHDQGSBBOR-KKQCNMDGSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
PCA
Query on PCA
A
L-PEPTIDE LINKINGC5 H7 N O3GLU
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.204 
  • Space Group: P 31 2 1
Unit Cell:
Length (Å)Angle (°)
a = 81.300α = 90.00
b = 81.300β = 90.00
c = 113.170γ = 120.00
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1999-03-31
    Type: Initial release
  • Version 1.1: 2007-10-16
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance