1AIV

APO OVOTRANSFERRIN


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.231 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Crystal structure of hen apo-ovotransferrin. Both lobes adopt an open conformation upon loss of iron

Kurokawa, H.Dewan, J.C.Mikami, B.Sacchettini, J.C.Hirose, M.

(1999) J Biol Chem 274: 28445-28452

  • DOI: 10.1074/jbc.274.40.28445
  • Primary Citation of Related Structures:  
    1AIV

  • PubMed Abstract: 
  • The three-dimensional crystal structure of hen apo-ovotransferrin has been solved by molecular replacement and refined by simulated annealing and restrained least squares to a 3.0-A resolution. The final model, which comprises 5312 protein atoms (residues 1 to 686) and 28 carbohydrate atoms (from two monosaccharides attached to Asn(473)), gives an R-factor of 0 ...

    The three-dimensional crystal structure of hen apo-ovotransferrin has been solved by molecular replacement and refined by simulated annealing and restrained least squares to a 3.0-A resolution. The final model, which comprises 5312 protein atoms (residues 1 to 686) and 28 carbohydrate atoms (from two monosaccharides attached to Asn(473)), gives an R-factor of 0.231 for the 11,989 observed reflections between 20.0- and 3.0-A resolution. In the structure, both empty iron binding clefts are in the open conformation, lending weight to the theory that Fe(3+) binding or release in transferrin proceeds via a mechanism that involves domain opening and closure. Upon opening, the domains rotate essentially as rigid bodies. The two domains of the N-lobe rotate away from one another by 53 degrees, whereas the C-lobe domains rotate away each another by 35 degrees. These rotations take place about an axis that passes through the two beta-strands, linking the domains. The domains of each lobe make different contacts with one another in the open and closed forms. These contacts form two interdomain interfaces on either side of the rotation axis, and domain opening or closing produces a see-saw motion between these two alternative close-packed interfaces. The interdomain disulfide bridge (Cys(478)-Cys(671)), found only in the C-lobe, may restrict domain opening but does not completely prevent it.


    Related Citations: 
    • Crystal Structure of Diferric Hen Ovotransferrin at 2.4 A Resolution
      Kurokawa, H., Mikami, B., Hirose, M.
      (1995) J Mol Biol 254: 196

    Organizational Affiliation

    Research Institute for Food Science, Kyoto University, Uji, Kyoto 611, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
OVOTRANSFERRINA686Gallus gallusMutation(s): 0 
UniProt
Find proteins for P02789 (Gallus gallus)
Explore P02789 
Go to UniProtKB:  P02789
Protein Feature View
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChainsChain Length2D DiagramGlycosylation3D Interactions
2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseB2N-Glycosylation Oligosaccharides Interaction
Glycosylation Resources
GlyTouCan:  G07375KG
GlyCosmos:  G07375KG
GlyGen:  G07375KG
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.231 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 92.26α = 90
b = 92.26β = 90
c = 178.19γ = 90
Software Package:
Software NamePurpose
SAINTdata scaling
SAINTdata reduction
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-04-29
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary