9MX1 | pdb_00009mx1

Clostridioides difficile Toxin A with mCDIFA-248-25 Fab


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.20 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Mouse monoclonal antibodies against Clostridioides difficile toxins TcdA and TcdB target diverse epitopes for neutralization.

Kroh, H.K.Jensen, J.L.Wellnitz, S.Park, J.J.Esadze, A.Huynh, K.W.Ammirati, M.Han, S.Anderson, A.S.Lacy, D.B.Gribenko, A.

(2025) Infect Immun 93: e0013925-e0013925

  • DOI: https://doi.org/10.1128/iai.00139-25
  • Primary Citation of Related Structures:  
    9MX1

  • PubMed Abstract: 

    Clostridioides difficile is a spore-forming, Gram-positive bacterium that can cause infections in subjects with weakened immune system or following antibiotic treatment. These infections may lead to pseudomembranous colitis and antibiotic-associated diarrhea in humans. As such, C. difficile is a major cause of nosocomial illness worldwide. Major virulence factors of the bacterium are the large clostridium toxins A (TcdA) and B (TcdB)-high molecular mass proteins with intrinsic glucosyltransferase activity. Toxins bind to the intestinal epithelium and undergo endocytosis by the epithelial cells, followed by a conformational change triggered by the low pH of early endosomes. This conformational change leads to the exposure of hydrophobic segments, followed by membrane insertion, formation of pores, and translocation of the glucosyltransferase domain into the cellular cytoplasm. Once in the cytoplasm, the glucosyltransferase domain inactivates small GTPases of the Rho family of proteins, leading to the disruption of the cytoskeleton. In the current work, we describe the discovery and characterization of a panel of neutralizing mouse monoclonal antibodies capable of interfering with several steps of cellular intoxication by the toxins. The antibodies were produced using hybridoma technology. Neutralizing activity of the antibodies was confirmed using toxin neutralization assays, and functional assays were used to identify specific neutralization mechanisms. Binding epitopes of the antibodies were identified by hydrogen-deuterium exchange mass spectrometry and confirmed through negative-stain and cryo-electron microscopy. Together, our results show that full-length toxins and/or genetically- and chemically-modified toxoids can induce a wide spectrum of antibodies capable of neutralizing the toxins via a variety of mechanisms.


  • Organizational Affiliation
    • Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Toxin A2,710Clostridioides difficileMutation(s): 0 
Gene Names: tcdAtoxA
EC: 3.4.22
UniProt
Find proteins for P16154 (Clostridioides difficile)
Explore P16154 
Go to UniProtKB:  P16154
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP16154
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
mCDIFA-248-25 Fab Heavy Chain220Mus musculusMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
mCDIFA-248-25 Fab Light Chain214Mus musculusMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.20 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
EM Software:
TaskSoftware PackageVersion
MODEL REFINEMENTPHENIX1.20_3594

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Not funded--

Revision History  (Full details and data files)

  • Version 1.0: 2025-07-09
    Type: Initial release
  • Version 1.1: 2025-09-03
    Changes: Data collection, Database references
  • Version 1.2: 2025-10-29
    Changes: Data collection, Database references