beta 1,6-Selective Enzymatic N-Acetylglucosamination Catalyzed by the Family GH84 N-Acetyl-beta-D-glucosaminidase from Bacteroides thetaiotaomicron and its Glycosyl Acceptor Specificity.
Okuno, R., Nakada, S., Tonomura, K., Aso, Y., Takeshita, D., Ohnuma, T., Tanaka, T.(2025) Chem Asian J 20: e202500142-e202500142
- PubMed: 40195893 
- DOI: https://doi.org/10.1002/asia.202500142
- Primary Citation of Related Structures:  
9LR5 - PubMed Abstract: 
The chemoenzymatic synthesis of oligosaccharides presents a highly attractive methodology with significant potential for diverse applications, particularly through using various glycosidases. In this study, the O-glycan core 6 disaccharide moiety, GlcNAcβ1-6GalNAc, was successfully synthesized via enzymatic glycosylation using an N-acetyl-β-D-glucosaminidase from Bacteroides thetaiotaomicron (BtOGA), a member of glycoside hydrolase family 84 (GH84), alongside an N-acetyl-D-glucosamine oxazoline derivative (GlcNAc-oxa) as the glycosyl donor. Furthermore, an investigation into glycosyl acceptor recognition in BtOGA-catalyzed enzymatic glycosylation indicated that the presence of an aromatic group at the anomeric position and an axial hydroxy group at the 4-position of the saccharide moiety is crucial for effective recognition of BtOGA as a glycosyl acceptor. The protecting-group-free chemoenzymatic synthesis of the core 6 disaccharide moiety was achieved by integrating the direct synthesis of GlcNAc-oxa thorough Shoda activation method using a water-soluble dehydration condensing agent in an aqueous medium, followed by BtOGA-catalyzed enzymatic glycosylation.
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Organizational Affiliation: 
















