9G4J | pdb_00009g4j

Group II intron assembly intermediate Domain 1 to 3 "Fully open" state

  • Classification: RNA
  • Organism(s): Oceanobacillus iheyensis
  • Mutation(s): No 

  • Deposited: 2024-07-15 Released: 2025-11-05 
  • Deposition Author(s): Jadhav, S.S., Marcia, M.
  • Funding Organization(s): Region Auvergne Rhone Alpes, Fondation ARC, Institut National du Cancer (inCA), Other government, Agence Nationale de la Recherche (ANR)

Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.74 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Dynamic assembly of a large multidomain ribozyme visualized by cryo-electron microscopy.

Jadhav, S.Maiorca, M.Manigrasso, J.Saha, S.Rakitch, A.Muscat, S.Mulvaney, T.De Vivo, M.Topf, M.Marcia, M.

(2025) Nat Commun 16: 10195-10195

  • DOI: https://doi.org/10.1038/s41467-025-65502-8
  • Primary Citation of Related Structures:  
    9G4I, 9G4J, 9G4L, 9G4V, 9G54, 9G56

  • PubMed Abstract: 

    Many RNAs rely on their 3D structures for function. While acquiring functional 3D structures, certain RNAs form misfolded, non-functional states ('kinetic traps'). Instead, other RNAs sequentially assemble into their functional conformations over pre-folded scaffolds. Elucidating the principles of RNA sequential assembly is thus important to understand how RNAs avoid the formation of misfolded, non-functional states. Integrating single-particle electron cryomicroscopy (cryo-EM), image processing, in solution small-angle X-ray scattering (SAXS), EM-driven molecular dynamics (MD) simulations, structure-based mutagenesis, and enzymatic assays, we have visualized the sequential multidomain assembly of a self-splicing ribozyme of biomedical and bioengineering significance. Our work reveals a distinct dynamic interplay of helical subdomains in the ribozyme's 5'-terminal scaffold, which acts as a gate to control the docking of 3'-terminal domains. We identify specific conserved and functionally important secondary structure motifs as the key players for orchestrating the energetically inexpensive conformational changes that lead to the productive formation of the catalytic pocket. Our work provides a near-atomic resolution molecular movie of a large multidomain RNA assembling into its functionally active conformation and establishes a basis for understanding how RNA avoids the formation of non-functional 'kinetic traps'.


  • Organizational Affiliation
    • European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, France.

Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
GROUP IIC INTRON334Oceanobacillus iheyensis
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.74 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
EM Software:
TaskSoftware PackageVersion
MODEL REFINEMENTERRASER3.0
RECONSTRUCTIONcryoSPARC

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Region Auvergne Rhone AlpesFranceproject R21105CC; allocation RPH21004CCA
Fondation ARCFrancePJA-20191209284
Institut National du Cancer (inCA)France18CN047-00
Other governmentCanceropole CLARA - Oncostarter
Agence Nationale de la Recherche (ANR)FranceANR-10-INBS-0005-02
Agence Nationale de la Recherche (ANR)FranceANR-17-EURE-0003
Other governmentWellcome Collaborative Award in Science (209250/Z/17/Z)
Other governmentBWFGB Hamburg
Other governmentLeibniz ScienceCampus InterACt

Revision History  (Full details and data files)

  • Version 1.0: 2025-11-05
    Type: Initial release
  • Version 1.1: 2025-12-10
    Changes: Data collection, Database references