9A18 | pdb_00009a18

Integrative model of full-length RAGE in complex with S100B

Integrative structure models are generated using different types of input information, including varied experimental data, physical principles, statistical preferences, and other prior information.


Integrative Structure Snapshot

  • Multi-Scale: No 
  • Multi-State: No 
  • Ordered-State: No 
  • Deposited Models: 1 
  • Representative Model: 1 

This is version 1.0 of the entry. See complete history


Literature

A model of full-length RAGE in complex with S100B

Moysa, A.Steczkiewicz, K.Niedzialek, D.Hammerschmid, D.Zhukova, L.Sobott, F.Dadlez, M.

(2021) Structure 29: 989

  • DOI: https://doi.org/10.1016/j.str.2021.04.002
  • Primary Citation of Related Structures:  
    9A18

  • PubMed Abstract: 

    The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling. We predict that RAGE functions as a tightly packed tetramer exposing a positively charged surface formed by V domains for S100B binding. Based on HDX results we demonstrate an allosteric coupling of the distal extracellular V domains and the transmembrane region, indicating a possible mechanism of signal transmission by RAGE across the membrane. Our model provides an insight into RAGE-ligand interactions, providing a basis for the rational design of the therapeutic modifiers of its activity.


  • Organizational Affiliation
    • Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland. Electronic address: a.alexandrmoysa@gmail.com.

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RAGE
A, B, C, D
383Homo sapiensMutation(s): 0 
Gene Names: AGER
UniProt & NIH Common Fund Data Resources
Find proteins for Q15109 (Homo sapiens)
Explore Q15109 
Go to UniProtKB:  Q15109
PHAROS:  Q15109
GTEx:  ENSG00000204305 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ15109
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
S100B
E, F, G, H
91Homo sapiensMutation(s): 0 
Gene Names: S100B
UniProt & NIH Common Fund Data Resources
Find proteins for P04271 (Homo sapiens)
Explore P04271 
Go to UniProtKB:  P04271
PHAROS:  P04271
GTEx:  ENSG00000160307 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP04271
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Integrative Structure Snapshot

  • Multi-Scale: No 
  • Multi-State: No 
  • Ordered-State: No 
  • Deposited Models: 1 
  • Representative Model: 1 

Structure Validation

View Full Validation Report

View Summary Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2021-04-23
    Type: Initial release