7X5N

Crystal structure of E. faecium SHMT in complex with (+)-SHIN-1 and PLP-Ser


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.197 
  • R-Value Work: 0.174 
  • R-Value Observed: 0.175 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.0 of the entry. See complete history


Literature

Serine hydroxymethyltransferase as a potential target of antibacterial agents acting synergistically with one-carbon metabolism-related inhibitors.

Makino, Y.Oe, C.Iwama, K.Suzuki, S.Nishiyama, A.Hasegawa, K.Okuda, H.Hirata, K.Ueno, M.Kawaji, K.Sasano, M.Usui, E.Hosaka, T.Yabuki, Y.Shirouzu, M.Katsumi, M.Murayama, K.Hayashi, H.Kodama, E.N.

(2022) Commun Biol 5: 619-619

  • DOI: https://doi.org/10.1038/s42003-022-03555-x
  • Primary Citation of Related Structures:  
    7V3D, 7X5N, 7X5O

  • PubMed Abstract: 

    Serine hydroxymethyltransferase (SHMT) produces 5,10-methylenetetrahydrofolate (CH 2 -THF) from tetrahydrofolate with serine to glycine conversion. SHMT is a potential drug target in parasites, viruses and cancer. (+)-SHIN-1 was developed as a human SHMT inhibitor for cancer therapy. However, the potential of SHMT as an antibacterial target is unknown. Here, we show that (+)-SHIN-1 bacteriostatically inhibits the growth of Enterococcus faecium at a 50% effective concentration of 10 -11 M and synergistically enhances the antibacterial activities of several nucleoside analogues. Our results, including crystal structure analysis, indicate that (+)-SHIN-1 binds tightly to E. faecium SHMT (efmSHMT). Two variable loops in SHMT are crucial for inhibitor binding, and serine binding to efmSHMT enhances the affinity of (+)-SHIN-1 by stabilising the loop structure of efmSHMT. The findings highlight the potency of SHMT as an antibacterial target and the possibility of developing SHMT inhibitors for treating bacterial, viral and parasitic infections and cancer.


  • Organizational Affiliation

    Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Serine hydroxymethyltransferase
A, B
417Enterococcus faeciumMutation(s): 0 
Gene Names: 
EC: 2.1.2.1
UniProt
Find proteins for I3U4H4 (Enterococcus faecium (strain ATCC BAA-472 / TX0016 / DO))
Explore I3U4H4 
Go to UniProtKB:  I3U4H4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupI3U4H4
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
5M5 (Subject of Investigation/LOI)
Query on 5M5

Download Ideal Coordinates CCD File 
C [auth A],
E [auth B]
(4R)-6-azanyl-4-[3-(hydroxymethyl)-5-phenyl-phenyl]-3-methyl-4-propan-2-yl-1H-pyrano[2,3-c]pyrazole-5-carbonitrile
C24 H24 N4 O2
VVVOFJZXKJKHTD-DEOSSOPVSA-N
PLS (Subject of Investigation/LOI)
Query on PLS

Download Ideal Coordinates CCD File 
D [auth A],
F [auth B]
[3-HYDROXY-2-METHYL-5-PHOSPHONOOXYMETHYL-PYRIDIN-4-YLMETHYL]-SERINE
C11 H17 N2 O8 P
ODVKKQWXKRZJLG-VIFPVBQESA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.197 
  • R-Value Work: 0.174 
  • R-Value Observed: 0.175 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 119.35α = 90
b = 119.35β = 90
c = 162.588γ = 90
Software Package:
Software NamePurpose
BSSdata collection
XDSdata reduction
PHENIXphasing
Cootmodel building
PHENIXrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Not funded--

Revision History  (Full details and data files)

  • Version 1.0: 2022-07-06
    Type: Initial release