7TYR

Cryo-EM structure of the basal state of the Artemis:DNA-PKcs complex (see COMPND 13/14)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.33 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural analysis of the basal state of the Artemis:DNA-PKcs complex.

Watanabe, G.Lieber, M.R.Williams, D.R.

(2022) Nucleic Acids Res 50: 7697-7720

  • DOI: https://doi.org/10.1093/nar/gkac564
  • Primary Citation of Related Structures:  
    7TYR

  • PubMed Abstract: 

    Artemis nuclease and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are key components in nonhomologous DNA end joining (NHEJ), the major repair mechanism for double-strand DNA breaks. Artemis activation by DNA-PKcs resolves hairpin DNA ends formed during V(D)J recombination. Artemis deficiency disrupts development of adaptive immunity and leads to radiosensitive T- B- severe combined immunodeficiency (RS-SCID). An activated state of Artemis in complex with DNA-PK was solved by cryo-EM recently, which showed Artemis bound to the DNA. Here, we report that the pre-activated form (basal state) of the Artemis:DNA-PKcs complex is stable on an agarose-acrylamide gel system, and suitable for cryo-EM structural analysis. Structures show that the Artemis catalytic domain is dynamically positioned externally to DNA-PKcs prior to ABCDE autophosphorylation and show how both the catalytic and regulatory domains of Artemis interact with the N-HEAT and FAT domains of DNA-PKcs. We define a mutually exclusive binding site for Artemis and XRCC4 on DNA-PKcs and show that an XRCC4 peptide disrupts the Artemis:DNA-PKcs complex. All of the findings are useful in explaining how a hypomorphic L3062R missense mutation of DNA-PKcs could lead to insufficient Artemis activation, hence RS-SCID. Our results provide various target site candidates to design disruptors for Artemis:DNA-PKcs complex formation.


  • Organizational Affiliation

    Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
DNA-dependent protein kinase catalytic subunit4,128Homo sapiensMutation(s): 0 
EC: 2.7.11.1
UniProt & NIH Common Fund Data Resources
Find proteins for P78527 (Homo sapiens)
Explore P78527 
Go to UniProtKB:  P78527
PHAROS:  P78527
GTEx:  ENSG00000253729 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP78527
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Protein artemisB [auth C]707Homo sapiensMutation(s): 0 
Gene Names: DCLRE1CARTEMISASCIDSCIDASNM1C
EC: 3.1
UniProt & NIH Common Fund Data Resources
Find proteins for Q96SD1 (Homo sapiens)
Explore Q96SD1 
Go to UniProtKB:  Q96SD1
PHAROS:  Q96SD1
GTEx:  ENSG00000152457 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ96SD1
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.33 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
EM Software:
TaskSoftware PackageVersion
MODEL REFINEMENTPHENIXdev-4383-000
RECONSTRUCTIONcryoSPARC3.2.0+210511

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesCA100504
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesGM118009

Revision History  (Full details and data files)

  • Version 1.0: 2022-07-20
    Type: Initial release
  • Version 1.1: 2022-08-03
    Changes: Database references