7OGT

Folded elbow of cohesin


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 5.50 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes.

Petela, N.J.Gonzalez Llamazares, A.Dixon, S.Hu, B.Lee, B.G.Metson, J.Seo, H.Ferrer-Harding, A.Voulgaris, M.Gligoris, T.Collier, J.Oh, B.H.Lowe, J.Nasmyth, K.A.

(2021) Elife 10

  • DOI: 10.7554/eLife.67268
  • Primary Citation of Related Structures:  
    7OGT

  • PubMed Abstract: 
  • Cohesin's association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being 'clamped' by Scc2 and ATP-dependent engagement of cohesin's Smc1 and Smc3 head domains ...

    Cohesin's association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being 'clamped' by Scc2 and ATP-dependent engagement of cohesin's Smc1 and Smc3 head domains. Scc2's replacement by Pds5 abrogates cohesin's ATPase and has an important role in halting DNA loop extrusion. The ATPase domains of all SMC proteins are separated from their hinge dimerisation domains by 50-nm-long coiled coils, which have been observed to zip up along their entire length and fold around an elbow, thereby greatly shortening the distance between hinges and ATPase heads. Whether folding exists in vivo or has any physiological importance is not known. We present here a cryo-EM structure of the apo form of cohesin that reveals the structure of folded and zipped-up coils in unprecedented detail and shows that Scc2 can associate with Smc1's ATPase head even when it is fully disengaged from that of Smc3. Using cysteine-specific crosslinking, we show that cohesin's coiled coils are frequently folded in vivo, including when cohesin holds sister chromatids together. Moreover, we describe a mutation ( SMC1D588Y ) within Smc1's hinge that alters how Scc2 and Pds5 interact with Smc1's hinge and that enables Scc2 to support loading in the absence of its normal partner Scc4. The mutant phenotype of loading without Scc4 is only explicable if loading depends on an association between Scc2/4 and cohesin's hinge, which in turn requires coiled coil folding.


    Organizational Affiliation

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Structural maintenance of chromosomes protein 1A1,225Saccharomyces cerevisiae S288CMutation(s): 0 
Gene Names: SMC1CHL10YFL008W
UniProt
Find proteins for P32908 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P32908 
Go to UniProtKB:  P32908
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP32908
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Structural maintenance of chromosomes protein 3B1,230Saccharomyces cerevisiae S288CMutation(s): 0 
Gene Names: SMC3YJL074CJ1049
UniProt
Find proteins for P47037 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P47037 
Go to UniProtKB:  P47037
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP47037
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 5.50 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2021-07-28
    Type: Initial release