7UCP

computationally designed macrocycle


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 0.85 Å
  • R-Value Free: 0.102 
  • R-Value Work: 0.096 
  • R-Value Observed: 0.097 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Accurate de novo design of membrane-traversing macrocycles.

Bhardwaj, G.O'Connor, J.Rettie, S.Huang, Y.H.Ramelot, T.A.Mulligan, V.K.Alpkilic, G.G.Palmer, J.Bera, A.K.Bick, M.J.Di Piazza, M.Li, X.Hosseinzadeh, P.Craven, T.W.Tejero, R.Lauko, A.Choi, R.Glynn, C.Dong, L.Griffin, R.van Voorhis, W.C.Rodriguez, J.Stewart, L.Montelione, G.T.Craik, D.Baker, D.

(2022) Cell 185: 3520-3532.e26

  • DOI: https://doi.org/10.1016/j.cell.2022.07.019
  • Primary Citation of Related Structures:  
    7UBC, 7UBD, 7UBE, 7UBF, 7UBG, 7UBH, 7UBI, 7UCP, 7UZL, 8CTO, 8CUN, 8CWA

  • PubMed Abstract: 

    We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10 -6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


  • Organizational Affiliation

    Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design program, University of Washington, Seattle, WA 98195, USA. Electronic address: gauravb@uw.edu.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
computationally designed cyclic peptide D8.3.p28synthetic constructMutation(s): 0 
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MLE
Query on MLE
A
L-PEPTIDE LINKINGC7 H15 N O2LEU
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 0.85 Å
  • R-Value Free: 0.102 
  • R-Value Work: 0.096 
  • R-Value Observed: 0.097 
  • Space Group: P 1 21/c 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 10.22α = 90
b = 44.92β = 102.86
c = 11.56γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
XSCALEdata scaling
SHELXTphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesGM124165

Revision History  (Full details and data files)

  • Version 1.0: 2022-09-14
    Type: Initial release
  • Version 1.1: 2022-09-28
    Changes: Database references