7M7T

Human DNA Pol eta S113A with dT-ended primer and dATP: in crystallo reaction for 0 s


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.46 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Multiple deprotonation paths of the nucleophile 3'-OH in the DNA synthesis reaction.

Gregory, M.T.Gao, Y.Cui, Q.Yang, W.

(2021) Proc Natl Acad Sci U S A 118

  • DOI: https://doi.org/10.1073/pnas.2103990118
  • Primary Citation of Related Structures:  
    7M7L, 7M7M, 7M7N, 7M7O, 7M7P, 7M7Q, 7M7R, 7M7S, 7M7T, 7M7U, 7M7Y, 7M7Z, 7M80, 7M81, 7M82, 7M83, 7M84, 7M85, 7M86, 7M87, 7M88, 7M89, 7M8A, 7M8B, 7M8C, 7M8D

  • PubMed Abstract: 

    DNA synthesis by polymerases is essential for life. Deprotonation of the nucleophile 3'-OH is thought to be the obligatory first step in the DNA synthesis reaction. We have examined each entity surrounding the nucleophile 3'-OH in the reaction catalyzed by human DNA polymerase (Pol) η and delineated the deprotonation process by combining mutagenesis with steady-state kinetics, high-resolution structures of in crystallo reactions, and molecular dynamics simulations. The conserved S113 residue, which forms a hydrogen bond with the primer 3'-OH in the ground state, stabilizes the primer end in the active site. Mutation of S113 to alanine destabilizes primer binding and reduces the catalytic efficiency. Displacement of a water molecule that is hydrogen bonded to the 3'-OH using the 2'-OH of a ribonucleotide or 2'-F has little effect on catalysis. Moreover, combining the S113A mutation with 2'-F replacement, which removes two potential hydrogen acceptors of the 3'-OH, does not reduce the catalytic efficiency. We conclude that the proton can leave the O3' via alternative paths, supporting the hypothesis that binding of the third Mg 2+ initiates the reaction by breaking the α-β phosphodiester bond of an incoming deoxyribonucleoside triphosphate (dNTP).


  • Organizational Affiliation

    Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
DNA polymerase eta435Homo sapiensMutation(s): 1 
Gene Names: POLHRAD30RAD30AXPV
EC: 2.7.7.7
UniProt & NIH Common Fund Data Resources
Find proteins for Q9Y253 (Homo sapiens)
Explore Q9Y253 
Go to UniProtKB:  Q9Y253
PHAROS:  Q9Y253
GTEx:  ENSG00000170734 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9Y253
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
DNA (5'-D(*CP*AP*TP*TP*AP*TP*GP*AP*CP*GP*CP*T)-3')B [auth T]12Homo sapiens
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains LengthOrganismImage
DNA (5'-D(*AP*GP*CP*GP*TP*CP*AP*T)-3')C [auth P]8Homo sapiens
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.46 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.181 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 98.629α = 90
b = 98.629β = 90
c = 82.02γ = 120
Software Package:
Software NamePurpose
HKL-2000data scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-2000data reduction
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Disease (NIH/NIDDK)United StatesDK036146

Revision History  (Full details and data files)

  • Version 1.0: 2021-06-02
    Type: Initial release
  • Version 1.1: 2021-07-14
    Changes: Database references
  • Version 1.2: 2023-10-18
    Changes: Data collection, Database references, Refinement description