SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral M pro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of M pro is a setback for the understanding its self-maturation process ...
SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral M pro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of M pro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 M pro . For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the M pro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.
Organizational Affiliation: 
Institute of Physics of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, Sao Carlos 13563-120, Brazil. Electronic address: andregodoy@ifsc.usp.br.