A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits.
Wilfling, F., Lee, C.W., Erdmann, P.S., Zheng, Y., Sherpa, D., Jentsch, S., Pfander, B., Schulman, B.A., Baumeister, W.(2020) Mol Cell 80: 764
- PubMed: 33207182 
- DOI: https://doi.org/10.1016/j.molcel.2020.10.030
- Primary Citation of Related Structures:  
6WY6 - PubMed Abstract: 
Autophagy eliminates cytoplasmic content selected by autophagy receptors, which link cargo to the membrane-bound autophagosomal ubiquitin-like protein Atg8/LC3. Here, we report a selective autophagy pathway for protein condensates formed by endocytic proteins in yeast. In this pathway, the endocytic protein Ede1 functions as a selective autophagy receptor. Distinct domains within Ede1 bind Atg8 and mediate phase separation into condensates. Both properties are necessary for an Ede1-dependent autophagy pathway for endocytic proteins, which differs from regular endocytosis and does not involve other known selective autophagy receptors but requires the core autophagy machinery. Cryo-electron tomography of Ede1-containing condensates, at the plasma membrane and in autophagic bodies, shows a phase-separated compartment at the beginning and end of the Ede1-mediated selective autophagy route. Our data suggest a model for autophagic degradation of macromolecular protein complexes by the action of intrinsic autophagy receptors.
Organizational Affiliation: 
Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. Electronic address: fwilfling@biochem.mpg.de.