6OU3

Crystal Structure of the D478S Variant of the Myocilin Olfactomedin Domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.796 Å
  • R-Value Free: 0.173 
  • R-Value Work: 0.150 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations.

Hill, S.E.Kwon, M.S.Martin, M.D.Suntharalingam, A.Hazel, A.Dickey, C.A.Gumbart, J.C.Lieberman, R.L.

(2019) J.Biol.Chem. 294: 12717-12728

  • DOI: 10.1074/jbc.RA119.009419
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller ol ...

    Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity. Here, we report the first stable mOLF variants carrying substitutions in the calcium-binding site that exhibit solution characteristics indistinguishable from those of glaucoma variants. Crystal structures of these stable variants at 1.8-2.0-Å resolution revealed features that we could not predict by molecular dynamics simulations, including loss of loop structure, helix unwinding, and a blade shift. Double mutants that combined a stabilizing substitution and a selected glaucoma-causing single-point mutant rescued in vitro folding and stability defects. In the context of full-length myocilin, secretion of stable single variants was indistinguishable from that of the WT protein, and the double mutants were secreted to varying extents. In summary, our finding that mOLF can tolerate particular substitutions that render the protein stable despite a conformational switch emphasizes the complexities in differentiating between benign and glaucoma-causing variants and provides new insight into the possible biological function of myocilin.


    Organizational Affiliation

    School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 Raquel.lieberman@chemistry.gatech.edu.,Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332.,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Myocilin
A
277Homo sapiensMutation(s): 1 
Gene Names: MYOC (GLC1A, TIGR)
Find proteins for Q99972 (Homo sapiens)
Go to Gene View: MYOC
Go to UniProtKB:  Q99972
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.796 Å
  • R-Value Free: 0.173 
  • R-Value Work: 0.150 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 45.353α = 90.00
b = 57.241β = 90.00
c = 90.474γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data reduction
PHENIXrefinement
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2019-07-03
    Type: Initial release
  • Version 1.1: 2020-01-15
    Type: Database references