6J5X

Crystal structure of fumarylpyruvate hydrolase from Corynebacterium glutamicum in complex with Mn2+ and pyruvate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.188 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Sequence, structure and function-based classification of the broadly conserved FAH superfamily reveals two distinct fumarylpyruvate hydrolase subfamilies.

Hong, H.Seo, H.Park, W.Kim, K.J.

(2020) Environ Microbiol 22: 270-285

  • DOI: https://doi.org/10.1111/1462-2920.14844
  • Primary Citation of Related Structures:  
    6J57, 6J5X, 6J5Y

  • PubMed Abstract: 
  • Fumarylacetoacetate hydrolase (FAH) superfamily proteins are found ubiquitously in microbial pathways involved in the catabolism of aromatic substances. Although extensive bioinformatic data on these proteins have been acquired, confusion caused by problems with the annotation of these proteins hinders research into determining their physiological functions ...

    Fumarylacetoacetate hydrolase (FAH) superfamily proteins are found ubiquitously in microbial pathways involved in the catabolism of aromatic substances. Although extensive bioinformatic data on these proteins have been acquired, confusion caused by problems with the annotation of these proteins hinders research into determining their physiological functions. Here we classify 606 FAH superfamily proteins using a maximum likelihood (ML) phylogenetic tree, comparative gene-neighbourhood patterns and in vitro enzyme assays. The FAH superfamily proteins used for the analyses are divided into five distinct subfamilies, and two of them, FPH-A and FPH-B, contain the majority of the proteins of undefined function. These subfamilies include clusters designated FPH-I and FPH-II, respectively, which include two distinct types of fumarylpyruvate hydrolase (FPH), an enzyme involved in the final step of the gentisate pathway. We determined the crystal structures of these FPH enzymes at 2.0 Å resolutions and investigate the substrate binding mode by which these types of enzymes can accommodate fumarylpyruvate as a substrate. Consequentially, we identify the molecular signatures of the two types of FPH enzymes among the broadly conserved FAH superfamily proteins. Our studies allowed us to predict the relationship of unknown FAH superfamily proteins using their sequence information.


    Organizational Affiliation

    KNU Institute for Microorganisms, Kyungpook National University, Daegu, 702701, Republic of Korea.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Predicted 2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic acid hydratase
A, B
287Corynebacterium glutamicumMutation(s): 0 
Gene Names: cg3350
EC: 4.1.1 (UniProt), 5.3.3 (UniProt)
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.188 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.621α = 90
b = 71.296β = 90
c = 112.26γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data scaling
MOLREPphasing
REFMACrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2019-12-18
    Type: Initial release
  • Version 1.1: 2020-01-15
    Changes: Database references