Primary Citation of Related Structures:   6FWV, 6FWY, 6FX6
PubMed Abstract: 
An increasing number of surface-associated proteins identified in Gram-positive bacteria are characterized by intramolecular cross-links in structurally conserved thioester, isopeptide, and ester domains (TIE proteins). Two classes of thioester domains (TEDs) have been predicted based on sequence with, to date, only representatives of Class I structurally characterized ...
An increasing number of surface-associated proteins identified in Gram-positive bacteria are characterized by intramolecular cross-links in structurally conserved thioester, isopeptide, and ester domains (TIE proteins). Two classes of thioester domains (TEDs) have been predicted based on sequence with, to date, only representatives of Class I structurally characterized. Here, we present crystal structures of three Class II TEDs from Bacillus anthracis, vancomycin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. These proteins are structurally distinct from Class I TEDs due to a β-sandwich domain that is inserted into the conserved TED fold to form a slipknot structure. Further, the B. anthracis TED domain is presented in the context of a full-length sortase-anchored protein structure (BaTIE). This provides insight into the three-dimensional arrangement of TIE proteins, which emerge as very abundant putative adhesins of Gram-positive bacteria.
Related Citations: 
An internal thioester in a pathogen surface protein mediates covalent host binding. Walden, M., Edwards, J.M., Dziewulska, A.M., Bergmann, R., Saalbach, G., Kan, S.Y., Miller, O.K., Weckener, M., Jackson, R.J., Shirran, S.L., Botting, C.H., Florence, G.J., Rohde, M., Banfield, M.J., Schwarz-Linek, U. (2015) Elife 4: --
Organizational Affiliation: 
Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, KY16 9ST, United Kingdom.