6DAS

Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.177 
  • R-Value Observed: 0.179 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Discovery of Potent 2-Aryl-6,7-dihydro-5 H-pyrrolo[1,2- a]imidazoles as WDR5-WIN-Site Inhibitors Using Fragment-Based Methods and Structure-Based Design.

Wang, F.Jeon, K.O.Salovich, J.M.Macdonald, J.D.Alvarado, J.Gogliotti, R.D.Phan, J.Olejniczak, E.T.Sun, Q.Wang, S.Camper, D.Yuh, J.P.Shaw, J.G.Sai, J.Rossanese, O.W.Tansey, W.P.Stauffer, S.R.Fesik, S.W.

(2018) J Med Chem 61: 5623-5642

  • DOI: 10.1021/acs.jmedchem.8b00375
  • Primary Citation of Related Structures:  
    6D9X, 6DAI, 6DAK, 6DAR, 6DAS

  • PubMed Abstract: 
  • WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design ...

    WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5 H-pyrrolo[1,2- a]imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer.


    Organizational Affiliation

    CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
WD repeat-containing protein 5A, B313Homo sapiensMutation(s): 0 
Gene Names: WDR5BIG3
UniProt & NIH Common Fund Data Resources
Find proteins for P61964 (Homo sapiens)
Explore P61964 
Go to UniProtKB:  P61964
PHAROS:  P61964
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
G2D (Subject of Investigation/LOI)
Query on G2D

Download Ideal Coordinates CCD File 
C [auth A], D [auth B]N-[(1R)-6-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-2-yl)-2,3-dihydro-1H-inden-1-yl]-3-methoxy-4-methylbenzamide
C24 H25 N3 O2
PHINNLAJTUGZSZ-HXUWFJFHSA-N
 Ligand Interaction
Binding Affinity Annotations 
IDSourceBinding Affinity
G2D BindingDB:  6DAS Ki: min: 8.38, max: 30.2 (nM) from 2 assay(s)
Binding MOAD:  6DAS Ki: 8.37 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.177 
  • R-Value Observed: 0.179 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 46.662α = 71.85
b = 53.709β = 89.86
c = 65.352γ = 73.82
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment  



Entry History & Funding Information

Deposition Data

  • Deposited Date: 2018-05-01 
  • Released Date: 2018-07-18 
  • Deposition Author(s): Phan, J., Fesik, S.W.

Funding OrganizationLocationGrant Number
National Institutes of Health/National Human Genome Research Institute (NIH/NHGRI)United StatesWDR5-MLL1 NExT Leidos Biomedical Research 16X117 HHSN2162008000 01E UNIV 57992

Revision History  (Full details and data files)

  • Version 1.0: 2018-07-18
    Type: Initial release
  • Version 1.1: 2019-12-18
    Changes: Author supporting evidence