6XHM

Covalent complex of SARS-CoV-2 main protease with N-[(2S)-1-({(2S,3S)-3,4-dihydroxy-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.41 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.192 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19.

Hoffman, R.L.Kania, R.S.Brothers, M.A.Davies, J.F.Ferre, R.A.Gajiwala, K.S.He, M.Hogan, R.J.Kozminski, K.Li, L.Y.Lockner, J.W.Lou, J.Marra, M.T.Mitchell Jr., L.J.Murray, B.W.Nieman, J.A.Noell, S.Planken, S.P.Rowe, T.Ryan, K.Smith 3rd, G.J.Solowiej, J.E.Steppan, C.M.Taggart, B.

(2020) J Med Chem 

  • DOI: 10.1021/acs.jmedchem.0c01063
  • Primary Citation of Related Structures:  
    6XHO, 6XHN, 6XHM, 6XHL

  • PubMed Abstract: 
  • The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode ...

    The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CL pro ) in a post-translational processing step that is critical for coronavirus replication. The 3CL pro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CL pro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4 . Preclinical experiments reveal 4 ( PF-00835231 ) as a potent inhibitor of CoV-2 3CL pro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.


    Organizational Affiliation

    Southern Research Institute, 2000 9th Avenue South, Birmingham, Alabama 35205 United States.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
3C-like proteinaseAB306Severe acute respiratory syndrome coronavirus 2Mutation(s): 0 
Gene Names: rep1a-1b
EC: 3.4.22.69 (PDB Primary Data), 3.4.19.12 (UniProt), 3.4.22 (UniProt), 2.7.7.48 (UniProt), 3.6.4.12 (UniProt), 3.6.4.13 (UniProt), 3.1.13 (UniProt), 3.1 (UniProt), 2.1.1 (UniProt)
Find proteins for P0DTD1 (Severe acute respiratory syndrome coronavirus 2)
Explore P0DTD1 
Go to UniProtKB:  P0DTD1
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
V2M
Query on V2M

Download CCD File 
A, B
N-[(2S)-1-({(2S)-4-hydroxy-3-oxo-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide
C24 H32 N4 O6
QDIMHKWNHMVDJB-WBAXXEDZSA-N
 Ligand Interaction
EDO
Query on EDO

Download CCD File 
A
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.41 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.192 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.15α = 90
b = 98.51β = 107.45
c = 59.11γ = 90
Software Package:
Software NamePurpose
BUSTERrefinement
autoPROCdata scaling
BUSTERphasing
autoPROCdata reduction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2020-07-08
    Type: Initial release
  • Version 1.1: 2020-11-04
    Changes: Database references, Refinement description