6P9W

Poliovirus (Type 1 Mahoney), receptor catalysed 135S particle map


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.20 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.

Shah, P.N.M.Filman, D.J.Karunatilaka, K.S.Hesketh, E.L.Groppelli, E.Strauss, M.Hogle, J.M.

(2020) PLoS Pathog 16: e1008920-e1008920

  • DOI: 10.1371/journal.ppat.1008920
  • Primary Citation of Related Structures:  
    6Q0B, 6PSZ, 6P9W, 6P9O

  • PubMed Abstract: 
  • The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection ...

    The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.


    Organizational Affiliation

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
VP1A [auth 1]302Human poliovirus 1 MahoneyMutation(s): 0 
EC: 3.4.22.29 (UniProt), 3.6.1.15 (UniProt), 3.4.22.28 (UniProt), 2.7.7.48 (UniProt)
UniProt
Find proteins for P03300 (Poliovirus type 1 (strain Mahoney))
Explore P03300 
Go to UniProtKB:  P03300
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
VP2B [auth 2]272Human poliovirus 1 MahoneyMutation(s): 0 
EC: 3.4.22.29 (UniProt), 3.6.1.15 (UniProt), 3.4.22.28 (UniProt), 2.7.7.48 (UniProt)
UniProt
Find proteins for P03300 (Poliovirus type 1 (strain Mahoney))
Explore P03300 
Go to UniProtKB:  P03300
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetailsImage
VP3C [auth 3]238Human poliovirus 1 MahoneyMutation(s): 0 
EC: 3.4.22.29 (UniProt), 3.6.1.15 (UniProt), 3.4.22.28 (UniProt), 2.7.7.48 (UniProt)
UniProt
Find proteins for P03300 (Poliovirus type 1 (strain Mahoney))
Explore P03300 
Go to UniProtKB:  P03300
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.20 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)United StatesAI020566

Revision History  (Full details and data files)

  • Version 1.0: 2020-06-10
    Type: Initial release
  • Version 1.1: 2020-10-21
    Changes: Database references