6OIE

The double PHD finger (DPF) of MORF in complex with histone H3K14cr


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.08 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.171 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation.

Klein, B.J.Jang, S.M.Lachance, C.Mi, W.Lyu, J.Sakuraba, S.Krajewski, K.Wang, W.W.Sidoli, S.Liu, J.Zhang, Y.Wang, X.Warfield, B.M.Kueh, A.J.Voss, A.K.Thomas, T.Garcia, B.A.Liu, W.R.Strahl, B.D.Kono, H.Li, W.Shi, X.Cote, J.Kutateladze, T.G.

(2019) Nat Commun 10: 4724-4724

  • DOI: https://doi.org/10.1038/s41467-019-12551-5
  • Primary Citation of Related Structures:  
    6OIE

  • PubMed Abstract: 

    Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORF DPF ). The crystal structure of MORF DPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORF DPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORF DPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


  • Organizational Affiliation

    Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Histone acetyltransferase KAT6B
A, B
116Homo sapiensMutation(s): 0 
Gene Names: KAT6BKIAA0383MORFMOZ2MYST4
EC: 2.3.1.48
UniProt & NIH Common Fund Data Resources
Find proteins for Q8WYB5 (Homo sapiens)
Explore Q8WYB5 
Go to UniProtKB:  Q8WYB5
PHAROS:  Q8WYB5
GTEx:  ENSG00000156650 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8WYB5
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Histone H3.1t peptide
C, D
19Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for Q16695 (Homo sapiens)
Explore Q16695 
Go to UniProtKB:  Q16695
PHAROS:  Q16695
GTEx:  ENSG00000168148 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ16695
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.08 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.171 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 32.583α = 90
b = 69.535β = 97.28
c = 70.187γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-3000data reduction
HKL-3000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2019-11-20
    Type: Initial release
  • Version 1.1: 2023-10-11
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.2: 2023-11-15
    Changes: Data collection