6O1S

Structure of human plasma kallikrein protease domain with inhibitor


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structures of full-length plasma kallikrein bound to highly specific inhibitors describe a new mode of targeted inhibition.

Partridge, J.R.Choy, R.M.Silva-Garcia, A.Yu, C.Li, Z.Sham, H.Metcalf, B.

(2019) J Struct Biol 206: 170-182

  • DOI: 10.1016/j.jsb.2019.03.001
  • Primary Citation of Related Structures:  
    6O1S, 6O1G, 6BFP

  • PubMed Abstract: 
  • Plasma kallikrein (pKal) is a serine protease responsible for cleaving high-molecular-weight kininogen to produce the pro-inflammatory peptide, bradykinin. Unregulated pKal activity can lead to hereditary angioedema (HAE) following excess bradykinin rele ...

    Plasma kallikrein (pKal) is a serine protease responsible for cleaving high-molecular-weight kininogen to produce the pro-inflammatory peptide, bradykinin. Unregulated pKal activity can lead to hereditary angioedema (HAE) following excess bradykinin release. HAE attacks can lead to a compromised airway that can be life threatening. As there are limited agents for prophylaxis of HAE attacks, there is a high unmet need for a therapeutic agent for regulating pKal with a high degree of specificity. Here we present crystal structures of both full-length and the protease domain of pKal, bound to two very distinct classes of small-molecule inhibitors: compound 1, and BCX4161. Both inhibitors demonstrate low nM inhibitory potency for pKal and varying specificity for related serine proteases. Compound 1 utilizes a surprising mode of interaction and upon binding results in a rearrangement of the binding pocket. Co-crystal structures of pKal describes why this class of small-molecule inhibitor is potent. Lack of conservation in surrounding residues explains the ∼10,000-fold specificity over structurally similar proteases, as shown by in vitro protease inhibition data. Structural information, combined with biochemical and enzymatic analyses, provides a novel scaffold for the design of targeted oral small molecule inhibitors of pKal for treatment of HAE and other diseases resulting from unregulated plasma kallikrein activity.


    Related Citations: 
    • Structure-Guided Design of Novel, Potent, and Selective Macrocyclic Plasma Kallikrein Inhibitors.
      Li, Z., Partridge, J., Silva-Garcia, A., Rademacher, P., Betz, A., Xu, Q., Sham, H., Hu, Y., Shan, Y., Liu, B., Zhang, Y., Shi, H., Xu, Q., Ma, X., Zhang, L.
      (2017) ACS Med Chem Lett 8: 185

    Organizational Affiliation

    Global Blood Therapeutics, South San Francisco, CA 94080, United States.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Plasma kallikrein E263Homo sapiensMutation(s): 4 
Gene Names: KLKB1KLK3
EC: 3.4.21.34
Find proteins for P03952 (Homo sapiens)
Explore P03952 
Go to UniProtKB:  P03952
NIH Common Fund Data Resources
PHAROS:  P03952
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
7SD
Query on 7SD

Download Ideal Coordinates CCD File 
E
N-[(6-amino-2,4-dimethylpyridin-3-yl)methyl]-1-({4-[(1H-pyrazol-1-yl)methyl]phenyl}methyl)-1H-pyrazole-4-carboxamide
C23 H25 N7 O
OINOKQVNBGAIMA-UHFFFAOYSA-N
 Ligand Interaction
PO4
Query on PO4

Download Ideal Coordinates CCD File 
E
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
EDO
Query on EDO

Download Ideal Coordinates CCD File 
E
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.685α = 90
b = 57.45β = 90
c = 86.215γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
iMOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2019-03-06
    Type: Initial release
  • Version 1.1: 2019-03-27
    Changes: Data collection, Database references
  • Version 1.2: 2019-05-15
    Changes: Data collection, Database references