6KTN

Human PPARgamma ligand-binding domain R288A mutant in complex with imatinib


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.221 

wwPDB Validation 3D Report Full Report



Literature

Structural Basis for the Regulation of PPAR gamma Activity by Imatinib.

Jang, J.Y.Kim, H.J.Han, B.W.

(2019) Molecules 24

  • DOI: 10.3390/molecules24193562
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Imatinib is an effective anticancer drug for the treatment of leukemia. Interestingly, when an FDA-approved drug library was tested for agents that block peroxisome proliferator-activated receptor γ (PPARγ) phosphorylation at Ser245 to evaluate possi ...

    Imatinib is an effective anticancer drug for the treatment of leukemia. Interestingly, when an FDA-approved drug library was tested for agents that block peroxisome proliferator-activated receptor γ (PPARγ) phosphorylation at Ser245 to evaluate possibilities of antidiabetic drug repositioning, imatinib was determined as a PPARγ antagonist ligand. However, it is not well understood how imatinib binds to PPARγ or would improve insulin sensitivity without classical agonism. Here, we report the crystal structure of the PPARγ R288A mutant in complex with imatinib. Imatinib bound to Arm2 and Arm3 regions in the ligand-binding domain (LBD) of PPARγ, of which the Arm3 region is closely related to the inhibition of PPARγ phosphorylation at Ser245. The binding of imatinib in LBD induced a stable conformation of helix H2' and the Ω loop compared with the ligand-free state. In contrast, imatinib does not interact with Tyr473 on PPARγ helix H12, which is important for the classical agonism associated with side effects. Our study provides new structural insights into the PPARγ regulation by imatinib and may contribute to the development of new antidiabetic drugs targeting PPARγ while minimizing known side effects.


    Organizational Affiliation

    Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea. bwhan@snu.ac.kr.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Peroxisome proliferator-activated receptor gamma
A
283Homo sapiensMutation(s): 1 
Gene Names: PPARGNR1C3
Find proteins for P37231 (Homo sapiens)
Go to UniProtKB:  P37231
NIH Common Fund Data Resources
PHAROS  P37231
Protein Feature View
  • Reference Sequence
  • Find similar proteins by: Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
16-mer peptide from Nuclear receptor coactivator 1
B
16Homo sapiensMutation(s): 0 
Gene Names: NCOA1BHLHE74SRC1
EC: 2.3.1.48
Find proteins for Q15788 (Homo sapiens)
Go to UniProtKB:  Q15788
NIH Common Fund Data Resources
PHAROS  Q15788
Protein Feature View
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
STI
Query on STI

Download CCD File 
A
4-(4-METHYL-PIPERAZIN-1-YLMETHYL)-N-[4-METHYL-3-(4-PYRIDIN-3-YL-PYRIMIDIN-2-YLAMINO)-PHENYL]-BENZAMIDE
C29 H31 N7 O
KTUFNOKKBVMGRW-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.221 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 130.928α = 90
b = 52.779β = 90
c = 53.438γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2019-08-28 
  • Released Date: 2020-02-05 
  • Deposition Author(s): Jang, J.Y., Han, B.W.

Revision History 

  • Version 1.0: 2020-02-05
    Type: Initial release