6JHN

Structure of RyR2 (F/C/Ca2+ dataset)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4.50 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators.

Chi, X.Gong, D.Ren, K.Zhou, G.Huang, G.Lei, J.Zhou, Q.Yan, N.

(2019) Proc Natl Acad Sci U S A 116: 25575-25582

  • DOI: 10.1073/pnas.1914451116
  • Primary Citation of Related Structures:  
    6JG3, 6JHN, 6JH6, 6JGZ

  • PubMed Abstract: 
  • The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca 2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation ...

    The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca 2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca 2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca 2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca 2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5'-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.


    Organizational Affiliation

    Department of Molecular Biology, Princeton University, Princeton, NJ 08544 gongdeshun@westlake.edu.cn nyan@princeton.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
RyR2 ACEG4968Sus scrofaMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Peptidyl-prolyl cis-trans isomerase FKBP1B BDFH108Homo sapiensMutation(s): 0 
Gene Names: FKBP1BFKBP12.6FKBP1LFKBP9OTK4
EC: 5.2.1.8
Find proteins for P68106 (Homo sapiens)
Explore P68106 
Go to UniProtKB:  P68106
NIH Common Fund Data Resources
PHAROS:  P68106
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4.50 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2019-12-11
    Type: Initial release
  • Version 1.1: 2020-01-01
    Changes: Database references