6GQF

The structure of mouse AsterA (GramD1a) with 25-hydroxy cholesterol


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.9 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.201 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells.

Sandhu, J.Li, S.Fairall, L.Pfisterer, S.G.Gurnett, J.E.Xiao, X.Weston, T.A.Vashi, D.Ferrari, A.Orozco, J.L.Hartman, C.L.Strugatsky, D.Lee, S.D.He, C.Hong, C.Jiang, H.Bentolila, L.A.Gatta, A.T.Levine, T.P.Ferng, A.Lee, R.Ford, D.A.Young, S.G.Ikonen, E.Schwabe, J.W.R.Tontonoz, P.

(2018) Cell 175: 514-529.e20

  • DOI: 10.1016/j.cell.2018.08.033

  • PubMed Abstract: 
  • The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident protei ...

    The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-BĀ are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


    Organizational Affiliation

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK.,Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland.,Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address: ptontonoz@mednet.ucla.edu.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Cell Biology, UCL Institute of Ophthalmology, London, UK.,Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
GRAM domain-containing protein 1A
A, B, C, D
231Mus musculusMutation(s): 0 
Gene Names: Gramd1a (D7Bwg0611e, Kiaa1533)
Find proteins for Q8VEF1 (Mus musculus)
Go to UniProtKB:  Q8VEF1
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download SDF File 
Download CCD File 
A, B, C, D
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
HC3
Query on HC3

Download SDF File 
Download CCD File 
A, B, C, D
25-HYDROXYCHOLESTEROL
(3BETA)-CHOLEST-5-ENE-3,25-DIOL
C27 H46 O2
INBGSXNNRGWLJU-ZHHJOTBYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.9 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.201 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 52.435α = 90.00
b = 121.012β = 110.84
c = 71.907γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
PHENIXrefinement
Aimlessdata scaling
xia2data reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Wellcome TrustUnited KingdomWT100237
Royal SocietyUnited KingdomWolfson Research Merit award

Revision History 

  • Version 1.0: 2018-09-26
    Type: Initial release
  • Version 1.1: 2018-10-17
    Type: Data collection, Database references, Structure summary