6ESF

Nucleosome : Class 1


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.7 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Histone octamer rearranges to adapt to DNA unwrapping.

Bilokapic, S.Strauss, M.Halic, M.

(2018) Nat. Struct. Mol. Biol. 25: 101-108

  • DOI: 10.1038/s41594-017-0005-5
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Nucleosomes, the basic units of chromatin, package and regulate expression of eukaryotic genomes. Although the structure of the intact nucleosome is well characterized, little is known about structures of partially unwrapped, transient intermediates. ...

    Nucleosomes, the basic units of chromatin, package and regulate expression of eukaryotic genomes. Although the structure of the intact nucleosome is well characterized, little is known about structures of partially unwrapped, transient intermediates. In this study, we present nine cryo-EM structures of distinct conformations of nucleosome and subnucleosome particles. These structures show that initial DNA breathing induces conformational changes in the histone octamer, particularly in histone H3, that propagate through the nucleosome and prevent symmetrical DNA opening. Rearrangements in the H2A-H2B dimer strengthen interaction with the unwrapping DNA and promote nucleosome stability. In agreement with this, cross-linked H2A-H2B that cannot accommodate unwrapping of the DNA is not stably maintained in the nucleosome. H2A-H2B release and DNA unwrapping occur simultaneously, indicating that DNA is essential in stabilizing the dimer in the nucleosome. Our structures reveal intrinsic nucleosomal plasticity that is required for nucleosome stability and might be exploited by extrinsic protein factors.


    Organizational Affiliation

    Department of Biochemistry, Gene Center, LMU Munich, Munich, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure


Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Histone H3.2
A, E
135Xenopus laevisMutation(s): 0 
Find proteins for P84233 (Xenopus laevis)
Go to UniProtKB:  P84233
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Histone H4
B, F
102Xenopus laevisMutation(s): 0 
Find proteins for P62799 (Xenopus laevis)
Go to UniProtKB:  P62799
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Histone H2A
C, G
129Xenopus laevisMutation(s): 0 
Gene Names: hist1h2aj (LOC494591)
Find proteins for Q6AZJ8 (Xenopus laevis)
Go to UniProtKB:  Q6AZJ8
Entity ID: 4
MoleculeChainsSequence LengthOrganismDetails
Histone H2B 1.1
D, H
122Xenopus laevisMutation(s): 0 
Find proteins for P02281 (Xenopus laevis)
Go to UniProtKB:  P02281
Entity ID: 5
MoleculeChainsLengthOrganism
DNA (147-MER)I147synthetic construct
Entity ID: 6
MoleculeChainsLengthOrganism
DNA (147-MER)J147synthetic construct
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.7 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
Software Package:
Software NamePurpose
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
European Research CouncilERC-smallRNAhet-309584

Revision History 

  • Version 1.0: 2017-12-20
    Type: Initial release
  • Version 1.1: 2017-12-27
    Type: Database references
  • Version 1.2: 2018-01-24
    Type: Database references