6E0M

Structure of Elizabethkingia meningoseptica CdnE cyclic dinucleotide synthase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.52 Å
  • R-Value Free: 0.176 
  • R-Value Work: 0.140 
  • R-Value Observed: 0.141 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Bacterial cGAS-like enzymes synthesize diverse nucleotide signals.

Whiteley, A.T.Eaglesham, J.B.de Oliveira Mann, C.C.Morehouse, B.R.Lowey, B.Nieminen, E.A.Danilchanka, O.King, D.S.Lee, A.S.Y.Mekalanos, J.J.Kranzusch, P.J.

(2019) Nature 567: 194-199

  • DOI: 10.1038/s41586-019-0953-5
  • Primary Citation of Related Structures:  
    6E0K, 6E0L, 6E0M, 6E0N, 6E0O, 6M7K

  • PubMed Abstract: 
  • Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells ...

    Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.


    Organizational Affiliation

    Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA. philip_kranzusch@dfci.harvard.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
cGAS/DncV-like nucleotidyltransferase in E. coli homologA292Elizabethkingia meningoseptica ATCC 13253 = NBRC 12535Mutation(s): 0 
EC: 2.7.7 (UniProt), 2.7.7.85 (UniProt), 2.7.7.65 (UniProt)
UniProt
Find proteins for P0DSP2 (Elizabethkingia meningoseptica)
Explore P0DSP2 
Go to UniProtKB:  P0DSP2
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
DPO (Subject of Investigation/LOI)
Query on DPO

Download Ideal Coordinates CCD File 
B [auth A]DIPHOSPHATE
O7 P2
XPPKVPWEQAFLFU-UHFFFAOYSA-J
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.52 Å
  • R-Value Free: 0.176 
  • R-Value Work: 0.140 
  • R-Value Observed: 0.141 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 57.195α = 90
b = 58.231β = 90
c = 99.446γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment  



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)United StatesR01AI018045

Revision History  (Full details and data files)

  • Version 1.0: 2019-02-20
    Type: Initial release
  • Version 1.1: 2019-03-06
    Changes: Data collection, Database references
  • Version 1.2: 2019-03-27
    Changes: Data collection, Database references
  • Version 1.3: 2019-12-18
    Changes: Author supporting evidence