6BO8

Cryo-EM structure of human TRPV6 in nanodiscs


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.60 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.5 of the entry. See complete history


Literature

Opening of the human epithelial calcium channel TRPV6.

McGoldrick, L.L.Singh, A.K.Saotome, K.Yelshanskaya, M.V.Twomey, E.C.Grassucci, R.A.Sobolevsky, A.I.

(2018) Nature 553: 233-237

  • DOI: 10.1038/nature25182
  • Primary Citation of Related Structures:  
    6BOB, 6BOA, 6BO8, 6BO9

  • PubMed Abstract: 
  • Calcium-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues. Altered TRPV6 expression is associated with a variety of human diseases, including cancers. TRPV6 channels are constitutively active and their open probability depends on the lipidic composition of the membrane in which they reside; it increases substantially in the presence of phosphatidylinositol 4,5-bisphosphate ...

    Calcium-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues. Altered TRPV6 expression is associated with a variety of human diseases, including cancers. TRPV6 channels are constitutively active and their open probability depends on the lipidic composition of the membrane in which they reside; it increases substantially in the presence of phosphatidylinositol 4,5-bisphosphate. Crystal structures of detergent-solubilized rat TRPV6 in the closed state have previously been solved. Corroborating electrophysiological results, these structures demonstrated that the Ca 2+ selectivity of TRPV6 arises from a ring of aspartate side chains in the selectivity filter that binds Ca 2+ tightly. However, how TRPV6 channels open and close their pores for ion permeation has remained unclear. Here we present cryo-electron microscopy structures of human TRPV6 in the open and closed states. The channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an α-to-π-helical transition in the pore-lining transmembrane helix S6 at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states. This gating mechanism, which defines the constitutive activity of TRPV6, is, to our knowledge, unique among tetrameric ion channels and provides structural insights for understanding their diverse roles in physiology and disease.


    Organizational Affiliation

    Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Transient receptor potential cation channel subfamily V member 6A, B, C, D742Homo sapiensMutation(s): 0 
Gene Names: TRPV6ECAC2
Membrane protein
Mpstruc
Group: 
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
Sub Group: 
Channels: Transient Receptor Potential (TRP)
Protein: 
TRPV6 transient receptor potential calcium channel in nanodiscs
Find proteins for Q9H1D0 (Homo sapiens)
Explore Q9H1D0 
Go to UniProtKB:  Q9H1D0
NIH Common Fund Data Resources
PHAROS:  Q9H1D0
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.60 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United States1R01CA206573-01A1

Revision History  (Full details and data files)

  • Version 1.0: 2017-12-20
    Type: Initial release
  • Version 1.1: 2018-01-03
    Changes: Database references
  • Version 1.2: 2018-01-17
    Changes: Author supporting evidence
  • Version 1.3: 2018-01-24
    Changes: Database references
  • Version 1.4: 2019-12-04
    Changes: Author supporting evidence
  • Version 1.5: 2019-12-18
    Changes: Other