5LLK

Crystal structure of human alpha-dystroglycan


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.195 
  • R-Value Work: 0.163 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural flexibility of human alpha-dystroglycan.

Covaceuszach, S.Bozzi, M.Bigotti, M.G.Sciandra, F.Konarev, P.V.Brancaccio, A.Cassetta, A.

(2017) FEBS Open Bio 7: 1064-1077

  • DOI: 10.1002/2211-5463.12259

  • PubMed Abstract: 
  • Dystroglycan (DG), composed of α and β subunits, belongs to the dystrophin-associated glycoprotein complex. α-DG is an extracellular matrix protein that undergoes a complex post-translational glycosylation process. The bifunctional glycosyltransferas ...

    Dystroglycan (DG), composed of α and β subunits, belongs to the dystrophin-associated glycoprotein complex. α-DG is an extracellular matrix protein that undergoes a complex post-translational glycosylation process. The bifunctional glycosyltransferase like-acetylglucosaminyltransferase (LARGE) plays a crucial role in the maturation of α-DG, enabling its binding to laminin. We have already structurally analyzed the N-terminal region of murine α-DG (α-DG-Nt) and of a pathological single point mutant that may affect recognition of LARGE, although the structural features of the potential interaction between LARGE and DG remain elusive. We now report on the crystal structure of the wild-type human α-DG-Nt that has allowed us to assess the reliability of our murine crystallographic structure as a α-DG-Nt general model. Moreover, we address for the first time both structures in solution. Interestingly, small-angle X-ray scattering (SAXS) reveals the existence of two main protein conformations ensembles. The predominant species is reminiscent of the crystal structure, while the less populated one assumes a more extended fold. A comparative analysis of the human and murine α-DG-Nt solution structures reveals that the two proteins share a common interdomain flexibility and population distribution of the two conformers. This is confirmed by the very similar stability displayed by the two orthologs as assessed by biochemical and biophysical experiments. These results highlight the need to take into account the molecular plasticity of α-DG-Nt in solution, as it can play an important role in the functional interactions with other binding partners.


    Organizational Affiliation

    Istituto di CristallografiaCNR, Trieste OutstationItaly.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Dystroglycan
A
266Homo sapiensMutation(s): 1 
Gene Names: DAG1
Find proteins for Q14118 (Homo sapiens)
Go to Gene View: DAG1
Go to UniProtKB:  Q14118
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download SDF File 
Download CCD File 
A
1,2-ETHANEDIOL
ETHYLENE GLYCOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.195 
  • R-Value Work: 0.163 
  • Space Group: H 3
Unit Cell:
Length (Å)Angle (°)
a = 71.520α = 90.00
b = 71.520β = 90.00
c = 144.010γ = 120.00
Software Package:
Software NamePurpose
XSCALEdata scaling
PHENIXrefinement
PHASERphasing
XDSdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-07-12
    Type: Initial release
  • Version 1.1: 2017-08-16
    Type: Database references