5JM0

Structure of the S. cerevisiae alpha-mannosidase 1


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 6.30 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle.

Bertipaglia, C.Schneider, S.Jakobi, A.J.Tarafder, A.K.Bykov, Y.S.Picco, A.Kukulski, W.Kosinski, J.Hagen, W.J.Ravichandran, A.C.Wilmanns, M.Kaksonen, M.Briggs, J.A.Sachse, C.

(2016) EMBO Rep 17: 1044-1060

  • DOI: 10.15252/embr.201541960
  • Primary Citation of Related Structures:  
    5JM0, 5JM6, 5JM9

  • PubMed Abstract: 
  • Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles ...

    Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.


    Organizational Affiliation

    Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany carsten.sachse@embl.de.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Alpha-mannosidase,Alpha-mannosidase,Alpha-mannosidaseA1096Saccharomyces cerevisiae S288CMutation(s): 0 
Gene Names: AMS1YGL156WG1861
EC: 3.2.1.24
UniProt
Find proteins for P22855 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P22855 
Go to UniProtKB:  P22855
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 6.30 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-06-15
    Type: Initial release
  • Version 1.1: 2016-06-22
    Changes: Database references
  • Version 1.2: 2016-06-29
    Changes: Database references
  • Version 1.3: 2016-07-13
    Changes: Database references
  • Version 1.4: 2017-08-02
    Changes: Data collection, Experimental preparation, Refinement description