High resolution structure of L-amino acid deaminase from Proteus vulgaris with the deletion of the specific insertion sequence

Experimental Data Snapshot

  • Resolution: 1.20 Å
  • R-Value Free: 0.157 
  • R-Value Work: 0.141 
  • R-Value Observed: 0.142 

wwPDB Validation   3D Report Full Report

Ligand Structure Quality Assessment 

This is version 1.1 of the entry. See complete history


Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris

Ju, Y.Tong, S.Gao, Y.Zhao, W.Liu, Q.Gu, Q.Xu, J.Niu, L.Teng, M.Zhou, H.

(2016) J Struct Biol 195: 306-315

  • DOI: https://doi.org/10.1016/j.jsb.2016.07.008
  • Primary Citation of Related Structures:  
    5HXW, 5I39

  • PubMed Abstract: 

    l-amino acid oxidases/deaminases (LAAOs/LAADs) are a class of oxidoreductases catalyzing the oxidative deamination of l-amino acids to α-keto acids. They are widely distributed in eukaryotic and prokaryotic organisms, and exhibit diverse substrate specificity, post-translational modifications and cellular localization. While LAAOs isolated from snake venom have been extensively characterized, the structures and functions of LAAOs from other species are largely unknown. Here, we reported crystal structure of a bacterial membrane-bound LAAD from Proteus vulgaris (pvLAAD) in complex with flavin adenine dinucleotide (FAD). We found that the overall fold of pvLAAD does not resemble typical LAAOs. Instead it, is similar to d-amino acid oxidases (DAAOs) with an additional hydrophobic insertion module on protein surface. Structural analysis and liposome-binding assays suggested that the hydrophobic module serves as an extra membrane-binding site for LAADs. Bacteria from genera Proteus and Providencia were found to encode two classes of membrane-bound LAADs. Based on our structure, the key roles of residues Q278 and L317 in substrate selectivity were proposed and biochemically analyzed. While LAADs on the membrane were proposed to transfer electrons to respiratory chain for FAD re-oxidization, we observed that the purified pvLAAD could generate a significant amount of hydrogen peroxide in vitro, suggesting it could use dioxygen to directly re-oxidize FADH2 as what typical LAAOs usually do. These findings provide a novel insights for a better understanding this class of enzymes and will help developing biocatalysts for industrial applications.

  • Organizational Affiliation

    Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
L-amino acid deaminase408Proteus vulgarisMutation(s): 0 
Gene Names: LAD
Find proteins for Q9LCB2 (Proteus vulgaris)
Explore Q9LCB2 
Go to UniProtKB:  Q9LCB2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9LCB2
Sequence Annotations
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
Query on FAD

Download Ideal Coordinates CCD File 
C27 H33 N9 O15 P2
Query on EDO

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth A],
J [auth A],
K [auth A]
C2 H6 O2
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
Query on MSE
Experimental Data & Validation

Experimental Data

  • Resolution: 1.20 Å
  • R-Value Free: 0.157 
  • R-Value Work: 0.141 
  • R-Value Observed: 0.142 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 57.265α = 90
b = 63.708β = 90
c = 125.028γ = 90
Software Package:
Software NamePurpose
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report

Ligand Structure Quality Assessment 

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-08-03
    Type: Initial release
  • Version 1.1: 2016-08-24
    Changes: Database references