5ZQK

Dengue Virus Non Structural Protein 5


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.198 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues.

El Sahili, A.Soh, T.S.Schiltz, J.Gharbi-Ayachi, A.Seh, C.C.Shi, P.Y.Lim, S.P.Lescar, J.

(2019) J Virol 94

  • DOI: 10.1128/JVI.01294-19
  • Primary Citation of Related Structures:  
    5ZQK

  • PubMed Abstract: 
  • Flavivirus nonstructural protein 5 (NS5) contains an N-terminal methyltransferase (MTase) domain and a C-terminal polymerase (RNA-dependent RNA polymerase [RdRp]) domain fused through a 9-amino-acid linker. While the individual NS5 domains are structurally conserved, in the full-length protein, their relative orientations fall into two classes: the NS5 proteins from Japanese encephalitis virus (JEV) and Zika virus (ZIKV) adopt one conformation, while the NS5 protein from dengue virus serotype 3 (DENV3) adopts another ...

    Flavivirus nonstructural protein 5 (NS5) contains an N-terminal methyltransferase (MTase) domain and a C-terminal polymerase (RNA-dependent RNA polymerase [RdRp]) domain fused through a 9-amino-acid linker. While the individual NS5 domains are structurally conserved, in the full-length protein, their relative orientations fall into two classes: the NS5 proteins from Japanese encephalitis virus (JEV) and Zika virus (ZIKV) adopt one conformation, while the NS5 protein from dengue virus serotype 3 (DENV3) adopts another. Here, we report a crystallographic structure of NS5 from DENV2 in a conformation similar to the extended one seen in JEV and ZIKV NS5 crystal structures. Replacement of the DENV2 NS5 linker with DENV1, DENV3, DENV4, JEV, and ZIKV NS5 linkers had modest or minimal effects on in vitro DENV2 MTase and RdRp activities. Heterotypic DENV NS5 linkers attenuated DENV2 replicon growth in cells, while the JEV and ZIKV NS5 linkers abolished replication. Thus, the JEV and ZIKV linkers likely hindered essential DENV2 NS5 interactions with other viral or host proteins within the virus replicative complex. Overall, this work sheds light on the dynamics of the multifunctional flavivirus NS5 protein and its interdomain linker. Targeting the NS5 linker is a possible strategy for producing attenuated flavivirus strains for vaccine design. IMPORTANCE Flaviviruses include important human pathogens, such as dengue virus and Zika virus. NS5 is a nonstructural protein essential for flavivirus RNA replication with dual MTase and RdRp enzyme activities and thus constitutes a major drug target. Insights into NS5 structure, dynamics, and evolution should inform the development of antiviral inhibitors and vaccine design. We found that NS5 from DENV2 can adopt a conformation resembling that of NS5 from JEV and ZIKV. Replacement of the DENV2 NS5 linker with the JEV and ZIKV NS5 linkers abolished DENV2 replication in cells, without significantly impacting in vitro DENV2 NS5 enzymatic activities. We propose that heterotypic flavivirus NS5 linkers impede DENV2 NS5 protein-protein interactions that are essential for virus replication.


    Organizational Affiliation

    Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Non Structural Protein 5A, B923Dengue virus 2Mutation(s): 0 
EC: 3.4.21.91 (UniProt), 3.6.1.15 (UniProt), 3.6.4.13 (UniProt)
UniProt
Find proteins for H9M652 (Dengue virus 2)
Explore H9M652 
Go to UniProtKB:  H9M652
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SAM (Subject of Investigation/LOI)
Query on SAM

Download Ideal Coordinates CCD File 
C [auth A], H [auth B]S-ADENOSYLMETHIONINE
C15 H22 N6 O5 S
MEFKEPWMEQBLKI-FCKMPRQPSA-N
 Ligand Interaction
GOL
Query on GOL

Download Ideal Coordinates CCD File 
D [auth A], I [auth B]GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
ZN
Query on ZN

Download Ideal Coordinates CCD File 
E [auth A], F [auth A], L [auth B], M [auth B]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
EDO
Query on EDO

Download Ideal Coordinates CCD File 
G [auth A], N [auth B]1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download Ideal Coordinates CCD File 
J [auth B], K [auth B]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.198 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 86.68α = 90
b = 146.1β = 105.45
c = 97.24γ = 90
Software Package:
Software NamePurpose
BUSTERrefinement
XDSdata reduction
XDSdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment  



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
SingaporeCBRG/0028/2014

Revision History  (Full details and data files)

  • Version 1.0: 2019-06-12
    Type: Initial release
  • Version 1.1: 2019-12-25
    Changes: Database references