5Z0C

Nerol dehydrogenase from Persicaria minor


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.54 Å
  • R-Value Free: 0.188 
  • R-Value Work: 0.148 
  • R-Value Observed: 0.150 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.

Tan, C.S.Hassan, M.Mohamed Hussein, Z.A.Ismail, I.Ho, K.L.Ng, C.L.Zainal, Z.

(2017) Plant Physiol Biochem 123: 359-368

  • DOI: https://doi.org/10.1016/j.plaphy.2017.12.033
  • Primary Citation of Related Structures:  
    5Z0C

  • PubMed Abstract: 

    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp 280 , Leu 294 and Ala 303 ). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily.


  • Organizational Affiliation

    School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Nerol dehydrogenase374Persicaria minorMutation(s): 0 
UniProt
Find proteins for J7JYU1 (Persicaria minor)
Explore J7JYU1 
Go to UniProtKB:  J7JYU1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupJ7JYU1
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.54 Å
  • R-Value Free: 0.188 
  • R-Value Work: 0.148 
  • R-Value Observed: 0.150 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 83α = 90
b = 54.03β = 90
c = 79.37γ = 90
Software Package:
Software NamePurpose
XSCALEdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction
xia2data reduction
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Universiti Kebangsaan MalaysiaMalaysiaDIP-2016-016

Revision History  (Full details and data files)

  • Version 1.0: 2018-01-17
    Type: Initial release
  • Version 1.1: 2023-11-22
    Changes: Data collection, Database references, Refinement description