5Y59

Crystal structure of Ku80 and Sir4


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.402 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.201 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural Insights into Yeast Telomerase Recruitment to Telomeres

Chen, H.Xue, J.Churikov, D.Hass, E.P.Shi, S.Lemon, L.D.Luciano, P.Bertuch, A.A.Zappulla, D.C.Geli, V.Wu, J.Lei, M.

(2018) Cell 172: 331-343.e13

  • DOI: 10.1016/j.cell.2017.12.008
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respective ...

    Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.


    Organizational Affiliation

    State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
ATP-dependent DNA helicase II subunit 2
B
199Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: YKU80 (HDF2)
EC: 3.6.4.12
Find proteins for Q04437 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  Q04437
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Sir4p
C
12Saccharomyces cerevisiae (strain Zymaflore VL3)Mutation(s): 0 
Find proteins for E7QD18 (Saccharomyces cerevisiae (strain Zymaflore VL3))
Go to UniProtKB:  E7QD18
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.402 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.201 
  • Space Group: P 31 2 1
Unit Cell:
Length (Å)Angle (°)
a = 79.472α = 90.00
b = 79.472β = 90.00
c = 82.926γ = 120.00
Software Package:
Software NamePurpose
HKL-3000data scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-3000data collection
PHENIXphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-12-20
    Type: Initial release
  • Version 1.1: 2018-02-07
    Type: Database references