5W6M

Crystal structure of the human histidyl-tRNA synthetase mutant D175E


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.70 Å
  • R-Value Free: 0.311 
  • R-Value Work: 0.250 
  • R-Value Observed: 0.253 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells.

Blocquel, D.Sun, L.Matuszek, Z.Li, S.Weber, T.Kuhle, B.Kooi, G.Wei, N.Baets, J.Pan, T.Schimmel, P.Yang, X.L.

(2019) Proc Natl Acad Sci U S A 

  • DOI: 10.1073/pnas.1908288116
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA sy ...

    Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


    Organizational Affiliation

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; schimmel@scripps.edu xlyang@scripps.edu.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Histidine--tRNA ligase, cytoplasmic
A, B
450Homo sapiensMutation(s): 1 
Gene Names: HARSHRSHARS1
EC: 6.1.1.21
Find proteins for P12081 (Homo sapiens)
Go to UniProtKB:  P12081
NIH Common Fund Data Resources
PHAROS  P12081
Protein Feature View
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.70 Å
  • R-Value Free: 0.311 
  • R-Value Work: 0.250 
  • R-Value Observed: 0.253 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 93.36α = 90
b = 93.36β = 90
c = 254.29γ = 90
Software Package:
Software NamePurpose
XSCALEdata scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2018-06-20
    Type: Initial release
  • Version 1.1: 2019-09-25
    Changes: Data collection, Database references