5VGA

Alternative model for Fab 36-65


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.203 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Re-refinement Note

This entry reflects an alternative modeling of the original data in: 

  • 2A6I - determined by Sethi, D.K., Agarwal, A., Manivel, V., Rao, K.V., Salunke, D.M.  

Literature

Detect, correct, retract: How to manage incorrect structural models.

Wlodawer, A.Dauter, Z.Porebski, P.J.Minor, W.Stanfield, R.Jaskolski, M.Pozharski, E.Weichenberger, C.X.Rupp, B.

(2018) FEBS J. 285: 444-466

  • DOI: 10.1111/febs.14320
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of ...

    The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of information, but occasional extreme outliers remind us that the process of structure determination is not fail-safe. The occurrence of severe errors or gross misinterpretations raises fundamental questions: Why do such aberrations emerge in the first place? How did they evade the sophisticated validation procedures which often produce clear and dire warnings, and why were severe errors not noticed by the depositors themselves, their supervisors, referees and editors? Once detected, what can be done to either correct, improve or eliminate such models? How do incorrect models affect the underlying claims or biomedical hypotheses they were intended, but failed, to support? What is the long-range effect of the propagation of such errors? And finally, what mechanisms can be envisioned to restore the validity of the scientific record and, if necessary, retract publications that are clearly invalidated by the lack of experimental evidence? We suggest that cognitive bias and flawed epistemology are likely at the root of the problem. By using examples from the published literature and from public repositories such as the Protein Data Bank, we provide case summaries to guide correction or improvement of structural models. When strong claims are unsustainable because of a deficient crystallographic model, removal of such a model and even retraction of the affected publication are necessary to restore the integrity of the scientific record.


    Related Citations: 
    • Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response.
      Sethi, D.K.,Agarwal, A.,Manivel, V.,Rao, K.V.,Salunke, D.M.
      (2006) Immunity 24: 429


    Organizational Affiliation

    Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Fab 36-65 light chain
A
214N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Fab 36-65 heavy chain
B
224N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PGE
Query on PGE

Download SDF File 
Download CCD File 
A
TRIETHYLENE GLYCOL
C6 H14 O4
ZIBGPFATKBEMQZ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.203 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 54.182α = 90.00
b = 76.971β = 101.97
c = 59.122γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement
AMoREphasing
AUTOMARdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-12-06
    Type: Initial release
  • Version 1.1: 2018-02-14
    Type: Database references