5SWE

Ligand-bound structure of adenine riboswitch aptamer domain converted in crystal from its ligand-free state using ligand mixing serial femtosecond crystallography


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.379 
  • R-Value Work: 0.349 
  • R-Value Observed: 0.350 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.

Stagno, J.R.Liu, Y.Bhandari, Y.R.Conrad, C.E.Panja, S.Swain, M.Fan, L.Nelson, G.Li, C.Wendel, D.R.White, T.A.Coe, J.D.Wiedorn, M.O.Knoska, J.Oberthuer, D.Tuckey, R.A.Yu, P.Dyba, M.Tarasov, S.G.Weierstall, U.Grant, T.D.Schwieters, C.D.Zhang, J.Ferre-D'Amare, A.R.Fromme, P.Draper, D.E.Liang, M.Hunter, M.S.Boutet, S.Tan, K.Zuo, X.Ji, X.Barty, A.Zatsepin, N.A.Chapman, H.N.Spence, J.C.Woodson, S.A.Wang, Y.X.

(2017) Nature 541: 242-246

  • DOI: https://doi.org/10.1038/nature20599
  • Primary Citation of Related Structures:  
    5E54, 5SWD, 5SWE

  • PubMed Abstract: 
  • Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform ...

    Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


    Organizational Affiliation

    Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.



Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsLengthOrganismImage
Vibrio vulnificus strain 93U204 chromosome II, adenine riboswitch aptamer domainA [auth X]71Vibrio vulnificus
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADE
Query on ADE

Download Ideal Coordinates CCD File 
B [auth X]ADENINE
C5 H5 N5
GFFGJBXGBJISGV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.379 
  • R-Value Work: 0.349 
  • R-Value Observed: 0.350 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 49.9α = 90
b = 154.9β = 90
c = 25.2γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction
CrystFELdata reduction
CrystFELdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2016-11-23
    Type: Initial release
  • Version 1.1: 2017-01-25
    Changes: Data collection, Database references
  • Version 1.2: 2017-10-11
    Changes: Data collection
  • Version 1.3: 2018-02-14
    Changes: Data collection