5OW5

p60p80-CAMSAP complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.191 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex.

Jiang, K.Faltova, L.Hua, S.Capitani, G.Prota, A.E.Landgraf, C.Volkmer, R.Kammerer, R.A.Steinmetz, M.O.Akhmanova, A.

(2018) Structure 26: 375-382.e4

  • DOI: 10.1016/j.str.2017.12.017

  • PubMed Abstract: 
  • CAMSAP/Patronin family members regulate the organization and stability of microtubule minus ends in various systems ranging from mitotic spindles to differentiated epithelial cells and neurons. Mammalian CAMSAP2 and CAMSAP3 bind to growing microtubul ...

    CAMSAP/Patronin family members regulate the organization and stability of microtubule minus ends in various systems ranging from mitotic spindles to differentiated epithelial cells and neurons. Mammalian CAMSAP2 and CAMSAP3 bind to growing microtubule minus ends, where they form stretches of stabilized microtubule lattice. The microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. Here, by using biochemical, biophysical, and structural approaches, we reveal that a short helical motif conserved in CAMSAP2 and CAMSAP3 binds to the heterodimer formed by the N- and C-terminal domains of katanin subunits p60 and p80, respectively. The identified CAMSAP-katanin binding mode is supported by mutational analysis and genome-editing experiments. It is strikingly similar to the one seen in the ASPM-katanin complex, which is responsible for microtubule minus-end regulation in mitotic spindles. Our work provides a general molecular mechanism for the cooperation of katanin with major microtubule minus-end regulators.


    Organizational Affiliation

    Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Katanin p80 WD40 repeat-containing subunit B1
A, C
212Mus musculusMutation(s): 0 
Gene Names: Katnb1
Find proteins for Q8BG40 (Mus musculus)
Go to UniProtKB:  Q8BG40
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Katanin p60 ATPase-containing subunit A1
B, D
80Mus musculusMutation(s): 0 
Gene Names: Katna1 (KATNA1)
EC: 5.6.1.1
Find proteins for E9PZI6 (Mus musculus)
Go to UniProtKB:  E9PZI6
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Calmodulin-regulated spectrin-associated protein
E, F
10Mus musculusMutation(s): 0 
Gene Names: Camsap3 (Kiaa1543)
Find proteins for Q80VC9 (Mus musculus)
Go to UniProtKB:  Q80VC9
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download SDF File 
Download CCD File 
D
1,2-ETHANEDIOL
ETHYLENE GLYCOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
PEG
Query on PEG

Download SDF File 
Download CCD File 
D
DI(HYDROXYETHYL)ETHER
C4 H10 O3
MTHSVFCYNBDYFN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.191 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 36.330α = 90.00
b = 79.060β = 94.97
c = 99.060γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
XDSdata reduction
PHENIXrefinement
XSCALEdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2018-07-11
    Type: Initial release