5NNT

The dimeric structure of LL-37 crystallized in DPC


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.209 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.263 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species.

Sancho-Vaello, E.Francois, P.Bonetti, E.J.Lilie, H.Finger, S.Gil-Ortiz, F.Gil-Carton, D.Zeth, K.

(2017) Sci Rep 7: 15371-15371

  • DOI: 10.1038/s41598-017-14206-1
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-3 ...

    Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts with membranes, we performed biochemical, biophysical and structural studies. The crystal structure of LL-37 displays dimers of anti-parallel helices and the formation of amphipathic surfaces. Peptide-detergent interactions introduce remodeling of this structure after occupation of defined hydrophobic sites at the dimer interface. Furthermore, hydrophobic nests are shaped between dimer structures providing another scaffold enclosing detergents. Both scaffolds underline the potential of LL-37 to form defined peptide-lipid complexes in vivo. After adopting the activated peptide conformation LL-37 can polymerize and selectively extract bacterial lipids whereby the membrane is destabilized. The supramolecular fibril-like architectures formed in crystals can be reproduced in a peptide-lipid system after nanogold-labelled LL-37 interacted with lipid vesicles as followed by electron microscopy. We suggest that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics.


    Organizational Affiliation

    Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, Spain.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Cathelicidin antimicrobial peptide
A, B
37Homo sapiensMutation(s): 0 
Gene Names: CAMP (CAP18, FALL39)
Find proteins for P49913 (Homo sapiens)
Go to Gene View: CAMP
Go to UniProtKB:  P49913
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
DPV
Query on DPV

Download SDF File 
Download CCD File 
A, B
dodecyl 2-(trimethylammonio)ethyl phosphate
dodecylphosphocholine
C17 H38 N O4 P
QBHFVMDLPTZDOI-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.209 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.263 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 35.209α = 90.00
b = 43.703β = 90.00
c = 54.398γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement
XSCALEdata scaling
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2018-01-24
    Type: Initial release