5NI1

CryoEM structure of haemoglobin at 3.2 A determined with the Volta phase plate


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.2 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Cryo-EM structure of haemoglobin at 3.2 angstrom determined with the Volta phase plate.

Khoshouei, M.Radjainia, M.Baumeister, W.Danev, R.

(2017) Nat Commun 8: 16099-16099

  • DOI: 10.1038/ncomms16099

  • PubMed Abstract: 
  • With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motio ...

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.


    Related Citations: 
    • Cryo-EM single particle analysis with the Volta phase plate.
      Danev, R.,Baumeister, W.
      (2016) Elife 5: --


    Organizational Affiliation

    The Clive and Vera Ramaciotti Centre for Cryo-EM, Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800 Melbourne, Australia.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Hemoglobin subunit alpha
A, C
141Homo sapiensMutation(s): 0 
Gene Names: HBA1, HBA2
Find proteins for P69905 (Homo sapiens)
Go to Gene View: HBA1 HBA2
Go to UniProtKB:  P69905
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Hemoglobin subunit beta
B, D
146Homo sapiensMutation(s): 0 
Gene Names: HBB
Find proteins for P68871 (Homo sapiens)
Go to Gene View: HBB
Go to UniProtKB:  P68871
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
HEM
Query on HEM

Download SDF File 
Download CCD File 
A, B, C, D
PROTOPORPHYRIN IX CONTAINING FE
HEME
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.2 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-04-12
    Type: Initial release
  • Version 1.1: 2018-10-17
    Type: Data collection, Other, Refinement description
  • Version 1.2: 2019-12-11
    Type: Database references, Other