5KZ9

Crystal structure of the Rous sarcoma virus matrix protein.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.85 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.198 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

Doktorova, M.Heberle, F.A.Kingston, R.L.Khelashvili, G.Cuendet, M.A.Wen, Y.Katsaras, J.Feigenson, G.W.Vogt, V.M.Dick, R.A.

(2017) Biophys J 113: 2004-2015

  • DOI: 10.1016/j.bpj.2017.08.055
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negative ...

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.


    Organizational Affiliation

    Department of Biochemistry and Molecular Cell Biology, Cornell University, Ithaca, New York. Electronic address: rad82@cornell.edu.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Virus Matrix Protein
A
163Rous sarcoma virus - Prague CMutation(s): 0 
Gene Names: gag-pro-polgag-pol
EC: 3.4.23 (UniProt), 2.7.7.49 (UniProt), 2.7.7.7 (UniProt), 3.1.26.4 (UniProt), 2.7.7 (UniProt), 3.1 (UniProt)
Find proteins for P03354 (Rous sarcoma virus (strain Prague C))
Go to UniProtKB:  P03354
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.85 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.198 
  • Space Group: I 41 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.2α = 90
b = 66.2β = 90
c = 218.8γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling
SHARPphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Health Research Council (HRC)New Zealand--

Revision History 

  • Version 1.0: 2017-07-26
    Type: Initial release
  • Version 1.1: 2019-02-06
    Changes: Data collection, Database references
  • Version 1.2: 2020-01-01
    Changes: Author supporting evidence