5ET5

Human muscle fructose-1,6-bisphosphatase in active R-state


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.67 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.193 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure.

Barciszewski, J.Wisniewski, J.Kolodziejczyk, R.Jaskolski, M.Rakus, D.Dzugaj, A.

(2016) Acta Crystallogr D Struct Biol 72: 536-550

  • DOI: 10.1107/S2059798316001765
  • Primary Citation of Related Structures:  
  • Also Cited By: 5K56, 5K55, 5K54, 5L0A

  • PubMed Abstract: 
  • Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeost ...

    Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeostasis. Vertebrates, and notably Homo sapiens, express two FBPase isoforms. The liver isozyme is expressed mainly in gluconeogenic organs, where it functions as a regulator of glucose synthesis. The muscle isoform is expressed in all cells, and recent studies have demonstrated that its role goes far beyond the enzymatic function, as it can interact with various nuclear and mitochondrial proteins. Even in its enzymatic function, the muscle enzyme is different from the liver isoform, as it is 100-fold more susceptible to allosteric inhibition by AMP and this effect can be abrogated by complex formation with aldolase. All FBPases are homotetramers composed of two intimate dimers: the upper dimer and the lower dimer. They oscillate between two conformational states: the inactive T form when in complex with AMP, and the active R form. Parenthetically, it is noted that bacterial FBPases behave somewhat differently, and in the absence of allosteric activators exist in a tetramer-dimer equilibrium even at relatively high concentrations. [Hines et al. (2007), J. Biol. Chem. 282, 11696-11704]. The T-to-R transition is correlated with the conformation of the key loop L2, which in the T form becomes `disengaged' and unable to participate in the catalytic mechanism. The T states of both isoforms are very similar, with a small twist of the upper dimer relative to the lower dimer. It is shown that at variance with the well studied R form of the liver enzyme, which is flat, the R form of the muscle enzyme is diametrically different, with a perpendicular orientation of the upper and lower dimers. The crystal structure of the muscle-isozyme R form shows that in this arrangement of the tetramer completely new protein surfaces are exposed that are most likely targets for the interactions with various cellular and enzymatic partners. The cruciform R structure is stabilized by a novel `leucine lock', which prevents the key residue, Asp187, from locking loop L2 in the disengaged conformation. In addition, the crystal structures of muscle FBPase in the T conformation with and without AMP strongly suggest that the T-to-R transition is a discrete jump rather than a shift of an equilibrium smooth transition through multiple intermediate states. Finally, using snapshots from three crystal structures of human muscle FBPase, it is conclusively demonstrated that the AMP-binding event is correlated with a β→α transition at the N-terminus of the protein and with the formation of a new helical structure.


    Related Citations: 
    • Structure of E69Q mutant of human muscle fructose-1,6-bisphosphatase.
      Zarzycki, M.,Kolodziejczyk, R.,Maciaszczyk-Dziubinska, E.,Wysocki, R.,Jaskolski, M.,Dzugaj, A.
      (2011) Acta Crystallogr. D Biol. Crystallogr. 67: 1028
    • Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway.
      Shi, R.,Chen, Z.Y.,Zhu, D.W.,Li, C.,Shan, Y.,Xu, G.,Lin, S.X.
      (2013) PLoS ONE 8: e71242


    Organizational Affiliation

    Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Fructose-1,6-bisphosphatase isozyme 2
A
338Homo sapiensMutation(s): 0 
Gene Names: FBP2
EC: 3.1.3.11
Find proteins for O00757 (Homo sapiens)
Go to Gene View: FBP2
Go to UniProtKB:  O00757
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.67 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.193 
  • Space Group: I 41 2 2
Unit Cell:
Length (Å)Angle (°)
a = 72.564α = 90.00
b = 72.564β = 90.00
c = 235.348γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
XDSdata reduction
PHENIXrefinement
XSCALEdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Polish National Science CentrePoland2013/09/B/NZ1/01081

Revision History 

  • Version 1.0: 2016-04-13
    Type: Initial release
  • Version 1.1: 2016-07-20
    Type: Database references
  • Version 1.2: 2018-08-08
    Type: Data collection, Database references