5DL2

Crystal Structure of RopB


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.5 Å
  • R-Value Free: 0.313 
  • R-Value Work: 0.276 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes.

Makthal, N.Gavagan, M.Do, H.Olsen, R.J.Musser, J.M.Kumaraswami, M.

(2016) Mol.Microbiol. 99: 1119-1133

  • DOI: 10.1111/mmi.13294

  • PubMed Abstract: 
  • Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. Howe ...

    Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated the presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.


    Organizational Affiliation

    Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Regulator of protease B (RopB)
A, B
234Streptococcus pyogenesMutation(s): 0 
Gene Names: rgg
Find proteins for D3KVD8 (Streptococcus pyogenes)
Go to UniProtKB:  D3KVD8
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.5 Å
  • R-Value Free: 0.313 
  • R-Value Work: 0.276 
  • Space Group: P 32 1 2
Unit Cell:
Length (Å)Angle (°)
a = 94.060α = 90.00
b = 94.060β = 90.00
c = 178.270γ = 120.00
Software Package:
Software NamePurpose
SCALAdata scaling
PHENIXphasing
MOSFLMdata reduction
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data

  • Deposited Date: 2015-09-04 
  • Released Date: 2016-01-20 
  • Deposition Author(s): Kumaraswami, M.

Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious DiseasesUnited States1R21AI103708-01
National Institutes of Health/National Institute Of Allergy and Infectious DiseasesUnited States1R01AI109096-01A1

Revision History 

  • Version 1.0: 2016-01-20
    Type: Initial release
  • Version 1.1: 2016-03-30
    Type: Database references
  • Version 1.2: 2017-09-27
    Type: Author supporting evidence, Database references, Derived calculations