5BPW

Atomic-resolution structures of the APC/C subunits Apc4 and the Apc5 N-terminal domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.40 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.221 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Atomic-Resolution Structures of the APC/C Subunits Apc4 and the Apc5 N-Terminal Domain.

Cronin, N.B.Yang, J.Zhang, Z.Kulkarni, K.Chang, L.Yamano, H.Barford, D.

(2015) J Mol Biol 427: 3300-3315

  • DOI: 10.1016/j.jmb.2015.08.023
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Many essential biological processes are mediated by complex molecular machines comprising multiple subunits. Knowledge on the architecture of individual subunits and their positions within the overall multimeric complex is key to understanding the mo ...

    Many essential biological processes are mediated by complex molecular machines comprising multiple subunits. Knowledge on the architecture of individual subunits and their positions within the overall multimeric complex is key to understanding the molecular mechanisms of macromolecular assemblies. The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit complex that regulates cell cycle progression by ubiquitinating cell cycle proteins for proteolysis by the proteasome. The holo-complex is composed of 15 different proteins that assemble to generate a complex of 20 subunits. Here, we describe the crystal structures of Apc4 and the N-terminal domain of Apc5 (Apc5(N)). Apc4 comprises a WD40 domain split by a long α-helical domain, whereas Apc5(N) has an α-helical fold. In a separate study, we had fitted these atomic models to a 3.6-Å-resolution cryo-electron microscopy map of the APC/C. We describe how, in the context of the APC/C, regions of Apc4 disordered in the crystal assume order through contacts to Apc5, whereas Apc5(N) shows small conformational changes relative to its crystal structure. We discuss the complementary approaches of high-resolution electron microscopy and protein crystallography to the structure determination of subunits of multimeric complexes.


    Organizational Affiliation

    Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom. Electronic address: dbarford@mrc-lmb.cam.ac.uk.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Anaphase-promoting complex subunit 4A843Homo sapiensMutation(s): 0 
Gene Names: ANAPC4APC4
Find proteins for Q9UJX5 (Homo sapiens)
Explore Q9UJX5 
Go to UniProtKB:  Q9UJX5
NIH Common Fund Data Resources
PHAROS  Q9UJX5
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.40 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.221 
  • Space Group: P 4 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 139.181α = 90
b = 139.181β = 90
c = 156.106γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
SCALAdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-09-02
    Type: Initial release
  • Version 1.1: 2015-09-23
    Changes: Database references
  • Version 1.2: 2015-10-07
    Changes: Database references