5ACA

Structure-based energetics of protein interfaces guide Foot-and-Mouth disease virus vaccine design


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.5 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structure-Based Energetics of Protein Interfaces Guide Foot-and-Mouth Disease Vaccine Design

Kotecha, A.Seago, J.Scott, K.Burman, A.Loureiro, S.Ren, J.Porta, C.Ginn, H.M.Jackson, T.Perez-Martin, E.Siebert, C.A.Paul, G.Huiskonen, J.T.Jones, I.M.Esnouf, R.M.Fry, E.E.Maree, F.F.Charleston, B.Stuart, D.I.

(2015) Nat.Struct.Mol.Biol. 22: 788

  • DOI: 10.1038/nsmb.3096
  • Primary Citation of Related Structures:  5AC9, 5D8A, 5DDJ

  • PubMed Abstract: 
  • Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interact ...

    Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.


    Organizational Affiliation

    Division of Structural Biology, University of Oxford, Oxford, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
VP1
1
214Foot-and-mouth disease virus - type SAT 2N/A
Find proteins for Q719N0 (Foot-and-mouth disease virus - type SAT 2)
Go to UniProtKB:  Q719N0
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
VP2
2
207Foot-and-mouth disease virus - type SAT 2N/A
Find proteins for Q719N0 (Foot-and-mouth disease virus - type SAT 2)
Go to UniProtKB:  Q719N0
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
VP3
3
222Foot-and-mouth disease virus - type SAT 2N/A
Find proteins for Q1L764 (Foot-and-mouth disease virus - type SAT 2)
Go to UniProtKB:  Q1L764
Entity ID: 4
MoleculeChainsSequence LengthOrganismDetails
VP4
4
85Foot-and-mouth disease virus - type SAT 2N/A
Find proteins for Q1L764 (Foot-and-mouth disease virus - type SAT 2)
Go to UniProtKB:  Q1L764
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.5 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Revision History 

  • Version 1.0: 2015-09-23
    Type: Initial release
  • Version 1.1: 2015-09-30
    Type: Database references
  • Version 1.2: 2015-10-21
    Type: Database references
  • Version 1.3: 2017-08-30
    Type: Data collection, Refinement description