4U3J

TOG2:alpha/beta-tubulin complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.81 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.218 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

A tethered delivery mechanism explains the catalytic action of a microtubule polymerase.

Ayaz, P.Munyoki, S.Geyer, E.A.Piedra, F.A.Vu, E.S.Bromberg, R.Otwinowski, Z.Grishin, N.V.Brautigam, C.A.Rice, L.M.

(2014) Elife 3: e03069-e03069

  • DOI: 10.7554/eLife.03069

  • PubMed Abstract: 
  • Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to ...

    Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectively to a fully 'curved' conformation of αβ-tubulin, incompatible with a microtubule lattice. We also show that TOG1-TOG2 binds non-cooperatively to two αβ-tubulins. Preferential interactions between TOGs and fully curved αβ-tubulin that cannot exist elsewhere in the microtubule explain how these polymerases localize to the extreme microtubule end. We propose that these polymerases promote elongation because their linked TOG domains concentrate unpolymerized αβ-tubulin near curved subunits already bound at the microtubule end. This tethering model can explain catalyst-like behavior and also predicts that the polymerase action changes the configuration of the microtubule end.


    Organizational Affiliation

    Department of Biophysics, UT Southwestern Medical Center, Dallas, United States Department of Biochemistry, UT Southwestern Medical Center, Dallas, United States Luke.Rice@UTSouthwestern.edu.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States Department of Biochemistry, UT Southwestern Medical Center, Dallas, United States Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States Department of Biochemistry, UT Southwestern Medical Center, Dallas, United States.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tubulin alpha-1 chain
A
447Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: TUB1
Find proteins for P09733 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P09733
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Tubulin beta chain
B
463Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 2 
Gene Names: TUB2
Find proteins for P02557 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P02557
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Protein STU2
C
249Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: STU2
Find proteins for P46675 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P46675
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GTP
Query on GTP

Download SDF File 
Download CCD File 
A, B
GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.81 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.218 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 111.909α = 90.00
b = 89.573β = 112.31
c = 135.508γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data

  • Deposited Date: 2014-07-22 
  • Released Date: 2014-08-20 
  • Deposition Author(s): Ayaz, P., Rice, L.M.

Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical SciencesUnited StatesR01GM098543

Revision History 

  • Version 1.0: 2014-08-20
    Type: Initial release
  • Version 1.1: 2014-10-01
    Type: Database references
  • Version 1.2: 2017-09-27
    Type: Author supporting evidence, Derived calculations, Other, Source and taxonomy