4P0V

Crystal structure of human farnesyl diphosphoate synthase in complex with zoledronate and taxodione


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site.

Liu, Y.L.Lindert, S.Zhu, W.Wang, K.McCammon, J.A.Oldfield, E.

(2014) Proc Natl Acad Sci U S A 111: E2530-E2539

  • DOI: https://doi.org/10.1073/pnas.1409061111
  • Primary Citation of Related Structures:  
    4P0V, 4P0W, 4P0X

  • PubMed Abstract: 

    We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼ 20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼ 1-3 µM (as compared with ∼ 0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg(2+) to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads.


  • Organizational Affiliation

    Department of Chemistry and.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Farnesyl pyrophosphate synthase347Homo sapiensMutation(s): 0 
Gene Names: FDPSFPSKIAA1293
EC: 2.5.1.10 (PDB Primary Data), 2.5.1.1 (PDB Primary Data)
UniProt & NIH Common Fund Data Resources
Find proteins for P14324 (Homo sapiens)
Explore P14324 
Go to UniProtKB:  P14324
PHAROS:  P14324
GTEx:  ENSG00000160752 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP14324
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.206 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 112.143α = 90
b = 112.143β = 90
c = 67.053γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesCA158191
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesGM065307

Revision History  (Full details and data files)

  • Version 1.0: 2014-07-02
    Type: Initial release
  • Version 1.1: 2017-09-06
    Changes: Author supporting evidence, Database references, Derived calculations, Other, Source and taxonomy
  • Version 1.2: 2019-12-04
    Changes: Author supporting evidence
  • Version 1.3: 2023-12-27
    Changes: Data collection, Database references, Derived calculations, Refinement description