4N4U

Crystal structure of ABC transporter solute binding protein BB0719 from Bordetella bronchiseptica RB50, TARGET EFI-510049


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.57 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.176 
  • R-Value Observed: 0.177 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes.

Vetting, M.W.Al-Obaidi, N.Zhao, S.San Francisco, B.Kim, J.Wichelecki, D.J.Bouvier, J.T.Solbiati, J.O.Vu, H.Zhang, X.Rodionov, D.A.Love, J.D.Hillerich, B.S.Seidel, R.D.Quinn, R.J.Osterman, A.L.Cronan, J.E.Jacobson, M.P.Gerlt, J.A.Almo, S.C.

(2015) Biochemistry 54: 909-931

  • DOI: 10.1021/bi501388y
  • Primary Citation of Related Structures:  
    4OVS, 4OVT, 4OVP, 4OVQ, 4OVR, 4P8B, 4P9K, 4PAF, 4PAI, 4PAK

  • PubMed Abstract: 
  • The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction ...

    The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. We describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of the library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.


    Organizational Affiliation

    Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Putative ABC transporter periplasmic solute-binding proteinA, B326Bordetella bronchiseptica RB50Mutation(s): 0 
Gene Names: BB0719
Find proteins for A0A0H3LMU1 (Bordetella bronchiseptica (strain ATCC BAA-588 / NCTC 13252 / RB50))
Explore A0A0H3LMU1 
Go to UniProtKB:  A0A0H3LMU1
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download Ideal Coordinates CCD File 
C [auth A]GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.57 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.176 
  • R-Value Observed: 0.177 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 59.568α = 90
b = 68.532β = 90
c = 153.008γ = 90
Software Package:
Software NamePurpose
SHELXmodel building
REFMACrefinement
HKL-3000data reduction
HKL-3000data scaling
SHELXphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2013-10-23
    Type: Initial release
  • Version 1.1: 2015-02-25
    Changes: Database references
  • Version 1.2: 2018-01-24
    Changes: Structure summary