4MA9

Wild type Salmonella Alkyl Hydroperoxide Reductase C in its substrate-ready conformation


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.204 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin.

Perkins, A.Nelson, K.J.Williams, J.R.Parsonage, D.Poole, L.B.Karplus, P.A.

(2013) Biochemistry 52: 8708-8721

  • DOI: 10.1021/bi4011573
  • Primary Citation of Related Structures:  4MAB

  • PubMed Abstract: 
  • To reduce peroxides, peroxiredoxins (Prxs) require a key "peroxidatic" Cys that, in a substrate-ready fully folded (FF) conformation, is oxidized to sulfenic acid and then, after a local unfolding (LU) of the active site, forms a disulfide bond with ...

    To reduce peroxides, peroxiredoxins (Prxs) require a key "peroxidatic" Cys that, in a substrate-ready fully folded (FF) conformation, is oxidized to sulfenic acid and then, after a local unfolding (LU) of the active site, forms a disulfide bond with a second "resolving" Cys. For Salmonella typhimurium alkyl hydroperoxide reductase C (StAhpC) and some other Prxs, the FF structure is only known for a peroxidatic Cys→Ser variant, which may not accurately represent the wild-type enzyme. Here, we obtain the structure of authentic reduced wild-type StAhpC by dithiothreitol treatment of disulfide form crystals that fortuitously accommodate both the LU and FF conformations. The unique environment of one molecule in the crystal reveals a thermodynamic linkage between the folding of the active site loop and C-terminal regions, and comparisons with the Ser variant show structural and mobility differences from which we infer that the Cys→Ser mutation stabilizes the FF active site. A structure for the C165A variant (a resolving Cys to Ala mutant) in the same crystal form reveals that this mutation destabilizes the folding of the C-terminal region. These structures prove that subtle modifications to Prx structures can substantially influence enzymatic properties. We also present a simple thermodynamic framework for understanding the various mixtures of FF and LU conformations seen in these structures. On the basis of this framework, we rationalize how physiologically relevant regulatory post-translational modifications may modulate activity, and we propose a nonconventional strategy for designing selective Prx inhibitors.


    Organizational Affiliation

    Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Alkyl hydroperoxide reductase subunit C
A, B, C, D, E
186Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)Gene Names: ahpC
EC: 1.11.1.15
Find proteins for P0A251 (Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720))
Go to UniProtKB:  P0A251
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
K
Query on K

Download SDF File 
Download CCD File 
A, B, D
POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download SDF File 
Download CCD File 
A, B, C, D, E
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A, B, C, D
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free: 0.240 
  • R-Value Work: 0.204 
  • Space Group: C 2 2 21
Unit Cell:
Length (Å)Angle (°)
a = 126.840α = 90.00
b = 171.150β = 90.00
c = 135.320γ = 90.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
BUSTERrefinement
PHASERphasing
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-11-20
    Type: Initial release
  • Version 1.1: 2013-11-27
    Type: Database references
  • Version 1.2: 2014-02-12
    Type: Database references